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Executive Summary

Section I



After considering several novel in-memory communing architectures, 
Neuromorphic Computing offers the most promise. 

DOE Round Table Consensus, 2015

Energy Efficient

Dynamic Learning 
Capable

Optimized for 
Data Manipulation

Fast Processing Speed

Yet
Unknown Advances

Neuromorphic 
Computing

Neuromorphic Computing 
is the most promising novel 
computer architecture to 
solve emergent issues earlier 
identified and the only one 
with an outstanding need for 
exotic material substrates. 
Hence, our report focuses 
heavily on neuromorphic 
computing, and we 
recommend that The 
Company and Hiroshima 
University aim their efforts 
towards neuromorphic 
computing. 

I. Executive Summary

The development of novel functional materials and devices incorporated into unique architectures will 
allow a revolutionary technological leap toward the implementation of a fully “neuromorphic” computer.

Other Technologies 
Evaluated:

• Reservoir Computing
• Advanced In-Memory 

Computing
• Near Memory Computing



Need for new computer architectures that are energy-efficient 
and optimized for data processing and ML 

Von Neumann 
Computing Weaknesses

Enablers of Emerging 
Computer Architectures

I. Executive Summary

Drivers of Emerging 
Computer Architectures
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Conventional Computer Architectures: Not equipped for Data Revolution

• Traditional computer architectures separate memory 
and processing functions, requiring data shuttling 
between memory and CPU

• “…memory bandwidth and memory energy have come 
to dominate computation bandwidth and energy”
(In-/Near-Memory Computing, page 1)

I. Executive Summary
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Computing Power Advances and new Data-Hungry Machine-Learning Models
Result in Massive Energy Consumption

• “Currently, about 5-
15% of the world’s 
energy is spent in some 
form of data 
manipulation, 
transmission, or 
processing” (DOE, 
2015).

• “Data centers consume 
up to 1.5% of all the 
world’s electricity” 
(j.glanz)

• “Google’s data centers 
draw almost 260 MW 
of power…more than 
Salt Lake City” (j.glanz)

I. Executive Summary



8

Computing Power Advances and new Data-Hungry Machine-Learning Models
Result in Massive Energy Consumption

I. Executive Summary
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up to 1.5% of all the 
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(j.glanz)
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of power…more than 
Salt Lake City” (j.glanz)
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Moore’s Law Decline Demands Computer Architecture Innovation

• Gordon Moore, co-founder of 
Intel, observed in 1965 that the number 
of transistors per integrated circuit 
doubles approximately every 18 
months. The number of transistors IC is 
proportional to computing power. Thus, 
Moore’s law is an observation of the 
exponential growth of computing power 
as driven by the densification of 
transistors.

• Microprocessor architects report that 
semiconductor advancement has 
slowed industry-wide since around 
2010, below the pace predicted by 
Moore’s law. Between 2019 and 2021, 
the highest commercially available chip 
transistor count increased from 39.54 
billion to 57 billion or 44% - les than half 
of the doubling predicted by Moore’s 
Law. Similarly, since the mid-2010s, the 
increase in top supercomputer 
performance has slowed substantially.

Moore’s Law Limitations
Fundamental Atomic Limits to Miniaturization Local Energy Dissipation Limits (overheating) Energy Consumption incr.  as Transistors Miniaturize

I. Executive Summary



Advances in Neuromorphic 
Computing
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1. Technology Categorization
2. Major Developments for this Technology
3. Advances in Mechanisms, Architectures, and Device
4. Configuration – with related feature specifications
5. Key Players
6. Target Applications
7. Requirements and Challenges



Realize Human Brain Advantages
Relative to AI, the human brain is remarkably accurate at minimal training 
pattern recognition, has good fault tolerance and remarkable energy 
efficiency. Neuromorphic computing aims to realize these benefits in 
computer hardware.
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Neuromorphic Computing

Definition

Neuromorphic computing is a special sub-category of in-memory computing 
that implements neural network architectures in computer hardware. Neural 
networks are inspired by the biological brain and have been used in software 
for complex pattern recognition tasks, and predictive modeling. Many 
distinct permutations of neural networks exist, including artificial neural 
networks (ANN) and spiking neural networks (SNN). SNN are more faithful 
approximations of how neuronal connections are updated. The remarkable 
achievements of deep learning (artificial neural networks) have contributed 
to the ascent of big data, as these algorithms require huge volumes of input 
data for acceptable accuracy/results. The mismatch between neural network 
software and Von Neumann hardware exacerbates the memory bottleneck 
and creates significant costs in energy and time. Direct implementations of 
neural networks in hardware may address these issues and augur a new age 
of computing for big data.

On-Chip v. Off-Chip Learning
On-chip learning allows neuromorphic chips to directly learn and train, which offers online, 
continuous calibration (important for edge-devices). Off-chip learning neuromorphic chips are 
trained elsewhere, and then downloaded to the neuromorphic chip to perform inference.

Synapse and Neuron Material
The most mature neuromorphic chips are developed using digital circuits and CMOS 
technologies. However, the memory latency and low-density of these products raises the 
possibility for the use of emerging nanotechnologies as synapse and/or neuronal material in 
future neuromorphic chips.

II.1. Technology Categorization

Biology-informed novel computation models
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Commercial and Research Interest in Neuromorphic Computing
Rising Rapidly

Analysis
North America is the largest regional market for neuromorphic computing and is host 
to many of the major players and leading research institutions for neuromorphic 
computing. IBM’s TrueNorth chip and Intel’s Loihi were pioneering examples of CMOS 
based neuromorphic architectures. Many of the major North American private 
companies with neuromorphic activities are profiled later in this report [IBM, Intel, 
Brainchip Holdings, Hewlett Packard]. Other significant North American companies 
driving North American neuromorphic growth are HRL Laboratories, Qualcomm, 
Numenta, General Vision, Applied Brain Research, Knowm Inc., and Vicarious. 

Another key enabler aside from North America’s rich tech ecosystem is substantial 
academic innovation. MIT research produced a “brains-on-a-chip” neuromorphic 
project in October 2018. Canada’s University of Waterloo created the “world’s largest 
functional artificial brain” through project SPAUN. Many other North American 
Universities and Research Labs are driving improvements in neuromorphic 
computing.

The market growth projections included at right should be interpreted as very rough 
estimates. Neuromorphic computing is fundamentally an extremely disruptive 
technology, hence, difficult to forecast. Market growth is highly dependent on 
innovations in technology. Should neuromorphic computing’s potential be realized, 
the market projections at right will far underestimate impending growth. 

Sources: [4]; [12]

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Significant need for Emerging Nanotechnologies
To function as synapses in Neuromorphic Hardware

Synapse Material Discussion
Neuromorphic hardware is composed of connective synapses 
and neurons. Although Neuromorphic computing 
architectures can be entirely constructed from existing CMOS 
technology (see IBM and Intel products, TrueNorth and Loihi
respectively), the large scale of implemented chips inhibits 
commercial use-cases. Current research attempts to find 
substitute materials to use for synapses with CMOS neurons 
to reduce scale. Indeed, a long-term research ambition is to 
eliminate CMOS technology in neuron construction as well. 
Long theorized memristors (materials which change their 
electrical resistance in response to input charge) have been 
discovered. Memristors’ non-volatility and high-density make 
them ideal candidates for implementing neuromorphic 
computing architectures (initially as synapses). Memristor 
based memory is termed resistive random-access memory 
(ReRAM). Synapse material candidates include phase-change 
memory (PCM), ferroelectric devices, valence change memory, 
2D materials, organic materials, and Spintronics. 

Sources: [2]
IBM’s CMOS-Based Neuromorphic Project

II.2. Advances in Mechanisms, Architectures, and Device Configuration



The Missing Ideal Synapse
No Candidate Synapse Material Fulfills all Requirements of an Ideal Memristor

Qualities of Ideal Nanotechnology Synapse Material

Programming 
Linearity

Fast Switching
Low Operating 

Current and 
Voltage

Dense Memory Non-Volatile
Low switching 

Energy

High Endurance

Low device to 
device 

variability

Programming 
Symmetry

Ease of realizing 
with current 

nanotechnology 
solutions

Higher = Easier

Analogue 
Capability

See appendix Definitions slide for elaboration of several synapse “qualities” Sources: [1]; [2]; [8]; [9]

II.2. Advances in Mechanisms, Architectures, and Device Configuration



II.2. Advances in Mechanisms, Architectures, and Device Configuration

The Missing Ideal Synapse
No Candidate Synapse Material Fulfills all Requirements of an Ideal Memristor

Summary of desirable performance metrics for synaptic devices
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The Following Emerging Nanotechnologies
Being Considered for Employment as Synapses in Neuromorphic Hardware

IBM’s CMOS-Based Neuromorphic Project

1. Phase Change Memory Devices
2. Ferroelectric Devices
3. Valence Change Memory
4. Electrochemical Metallization Cells
5. 2D Materials
6. Organic Materials
7. Spintronics

Each material is 
analyzed in the 
following report 
section

II.2. Advances in Mechanisms, Architectures, and Device Configuration



17

General Materials Analysis

Material
Cell Area 

(F2)
Voltage 

(V)
Read Time Write Time

Write energy 
(J/bit)

Retention Endurance Multibit Non-Volatility Source(s)

SRAM 100 <1 ~1 ns ~1 ns ~1 fJ N/A > 1016 No No Ref #25

DRAM 6 <1 ~10 ns ~10 ns ~10 fJ ~64 ms > 1016 No No Ref #25

Phase Change 
Memory Devices

4-20 <3 <10 ns ~50 ns ~10 pJ >10 y 108 - 1015 Yes Yes Ref #3, p. 55

Ferroelectric Devices 12 – 22 1 – 3 20 – 40 ns 10 – 60 ns – 10 y 1014 - 1015 – Yes Ref #25, p.3

Valence Change 
Memory

>4 <2 ~5 ns ~5 ns – >10 y ~1012 Yes Yes Ref #25, Ref #27, 
Ref #28

Electrochemical 
Metallization Cells

– ~7 ~1 ns ~1 ns – - ~106 Yes Yes Ref #25, Ref #2

STT – MRAM 
(Spintronics)

6 – 50 <2 <10 ns <10 ns ~0.1 fJ >10 y <1015 No Yes Ref #3, p. 55

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Phase-Change Memory Devices 

Description
Phase-Change memory (PCM) devices are composed of two exterior electrodes 
and an internal chalcogenide material that can be switched between amorphous 
and crystalline states through joule heating, changing the resistance of the device. 
PCM devices are viable for binary memory storage, encoding information as either 
High-Resistance or Low-Resistance. Furthermore, PCM binary memory allows in-
memory logical operations through imputed voltage, multi-device resistance 
interactions, and output current sensing. Such in-memory logic is suited for 
database query and hyper-dimensional computing. 

PCM devices also have analogue storage capability (figure A) dependent on 
programming current. This feature can be exploited for matrix-vector multiply 
(MVM) operations in O (1) time complexity – as opposed to O(n^2) time 
complexity for MVM ran in software built on Von Neumann architecture. The 
application of a trained deep neural network to new data is composed of MVMs. 
Thus, Analogue PCM is very suited for DNN inference using off-chip trained models 
with excellent energy efficiency and computational speed. 

An additional desirable property of PCM devices is their accumulative behavior 
(figure B). Training neural networks requires that synaptic weights be continually 
modified through multiple iterations. That PCM devices are accumulative makes 
possible DNN training on-chip for spiking neural networks and other deep learning 
algorithms. 

Note: Technical parameters of state-of-the-art PCM devices is appended at end of 
discussion on neuromorphic materials in table.

Sources: [2];  [8];  [9}

A B

Developmental Challenges
• PCM binary storage has an undesirably wide distribution of high-resistance values, complicating logical evaluations. 
• Analogue PCM memory suffers from drift/noise as function of time, reducing precision of MVM
• behavior of PCM devices are highly non-linear, stochastic – complicating DNN training as synaptic weight updates can’t be precisely 

controlled per algorithmic requirements
• Necessary access devices to accommodate high-current requirements of PCM increase cell sizes
• Scaling technology in large-scale arrays is not currently achievable at cost-effective values
• Set/Reset are asymmetric, and have markedly different energy requirements (Reset requires high-current)

Advances
• The unstable electrical properties of amorphous PCM devices cause read “noise” of 1/f. Recent research has attached a projection

layer, “an electrically conducting material”, to the PCM device. This device configuration results in read current largely bypassing the 
electrically unstable amorphized material flowing towards the projection layer, for more accurate reads reducing “noise”. Empirical 
research has found that Projected PCM composites significantly reduce both noise and drift “by at least an order of magnitude” 

Source: “State dependence and temporal evolution of resistance in projected phase change memory”, Nature Journal 2020

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Ferroelectric Devices

Description

Ferroelectric devices were discovered in 1920 and are defined by switchable electrical 
polarization. Ferroelectric Random-Access-Memory (FeRAM) stores information as a 
polarization state. A type of FeRAM is the ferroelectric capacitor (FeCAP). To write to a 
FeCAP an electric field is applied to the ferroelectric layer to change the polarity of the 
cell. To read the information stored in a FeCAP, the device transistor applies an electric 
field to a particular state (e.g. 0). If the cell was already storing 0, no output pulse will 
occur. If the cell was previously storing a 1, a small output pulse of current will be 
detected. FeCAP based memory is destructive, as reading overwrites previously stored 
information. Thus, FeCAP based memory requires cells to be re-written when read 
from. FeRAM is most easily used as binary storage, however, certain crystalline 
structures can switch polarization direction by other than 180°, rendering analogue 
storage possible (albeit challenging).

“The ferroelectric field effect transistors (FeFET) features a ferroelectric capacitor as 
gate insulator, modulating the transistor’s threshold voltage that can be sensed non-
destructively by measuring the drain-source current. Perovskite based FeFET memory 
arrays with up to 64kBit have been demonstrated. “

Another ferroelectric device for in-memory computer architecture is the ferroelectric 
tunneling junction (FTJ, see figure A). The FTJ contains a ferroelectric layer between 
two electrodes. The output current is dependent on the polarization of the 
ferroelectric layer and can be detected by running electric currents too small to 
adjust polarity through the device. As polarity is not adjusted, read operations are 
non-destructive. 

Sources: [2]; 

A

Developmental Challenges
FeCAP: 

• Large capacitors lower 
memory density

• Necessary perovskite 
materials are difficult to 
manufacture as thin-film 
layers

FeFET:
• Limited scalability
• Poor data retention

FTJ: 
• Manufacturing thin 

ferroelectric layers results in 
device defects: formation of 
interfacial dead layers; 
increased leakage

Advances
Ferroelectricity was discovered as an attribute of hafnium oxide in 2008. Hafnium oxide is CMOS 
compatible, and therefore suited for hybrid CMOS neural chip configurations. Research is being 
performed to create circuit architectures that rectify ferroelectric non-idealities. Too, large scale 
demonstrations are in the works to determine deficiencies and issues with ferroelectric based 
synapse construction.

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Valence Change Memory

Description

Valence Change Memory (VCM) devices adjust their resistance/conductance in response to electrical 
pulses by exploiting oxygen ion migration effects. VCM devices are capable of binary and analogue 
information encoding and have been proven in demonstrations to be capable of implementing several 
online learning rules (spike-time dependent plasticity, and voltage threshold-based plasticity).

Filamentary VCMs are the most mature and studied type of VCM device. These devices form or destroy 
conductive filaments (CF) that change the conductivity of the VCM device as a binary storage method. 
Or, the diameter of the CF can be modulated for analogue storage.

Interfacial VCMs’ conductance “scales with the junction area of the device, and the mechanism is 
related to a homogeneous oxygen ion movement through the oxides.” Interfacial VCMs, like filamentary 
VCMs, are two-terminal devices.

Redox Transistor VCMs are three terminal devices which adjust their resistance by control of the oxygen 
vacancy (reduced oxygen concentration) in the transistor channel.

Sources: [2]; [27]

Developmental Challenges
Filamentary Devices: 

• Device variability
• Device stochasticity
• Program/Read disturbs
• Low resistance levels

Interfacial Devices:
• Lower retention relative to Filamentary Devices
• Not yet scaled to nm sizes 
• No simulation models currently developed

Redox-based VCM transistors
• Little studies – only demonstrated at level of single device
• Statistical data based on robust empirical studies not collected
• Lack of understanding of switching mechanism and attendant models

Advances
Filamentary: To reduce program/read disturbs, proposed advances include the use of fast pulses 
for cell updates or the application of thermal engineering to device stacks to increase transition 
time. 

Interfacial/Redox: The main research pathway is the study of interfacial and redox VCM devices 
at the multi device level, i.e., stack level. The outcome of these studies will be better 
improvements to modelling that will allow neuromorphic chip creation. 

A B C

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Electrochemical Metallization Cells

Description
Electrochemical Metallization Cells, or programmable metallization cells 
(PMC), are composed of two electrodes bounding a thin layer of ion 
transporting material. The electrodes are electrochemically active. 
Applied voltage creates a metallic filament, enhancing conductivity. 
Voltage of the opposite polarity will destroy the metallic filament, 
reducing conductivity. These two states (low resistance and high 
resistance) are used for binary storage. Visual A shows an example of 
low-resistance state and visual B shows an example of high-resistance 
state. Too, the metallic filament may have moderated width to enable 
analogue storage. 

The electrochemically active electrode is usually composed of Ag, Cu, Fe, 
or Ni with the other electrode made of Pt, Ru, Pd, TiN, or W. Conductive 
non-metals are also explored as electrodes, including TiN, graphene, 
carbon nanotubes, and conductive oxides (ITO, SrRuO3). Ag and Cu are 
common electrode types as they have excellent ionic mobility properties. 
The internal switching layer is usually a thin-film insulator or 
semiconductor. 

Advantages of PMC include low voltage “(~ 0.2 V to ~ 1 V) and currents 
(from nA to µA range).” PCM devices can be fabricated from a wide range 
of materials and are operable in challenging conditions. Also, PCM 
devices are small, reducible to nanoscale sizes. 

Sources: [2]; [13]

A B

Developmental Challenges
The miniscule scale of PMC devices combined with significant current densities generates harsh, 
non-equilibrium device dynamics, compromising accuracy and device operation. ECMs suffer from 
variability in switching voltages, currents and resistive states. ECMs also experience fluctuations and 
drift with ongoing usage. 

Advances
Scientific research is attempting to better understand the nanoscale processes and interactions of 
PMC cells. Other research is attempting to optimize material selection by the considerations of how 
internal cell materials interact. There remain device/circuit issues which are also receiving research 
attention. 

C

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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2D Materials

Description
Two-dimensional atomic crystals can be aggregated into 
multi-layer heterostructures called van der Waals (vdW). 
These vdW structures can be employed as memristive
devices through several possible switching devices (ways of 
changing resistance: conductive filament, charging-
discharging grain boundary migration, ionic intercalation, and 
lattice phase transition. 2D materials each possess unique 
properties that may be ideal for certain use-cases. The 
fabrication of vdW heterostructures is adjustable by layer 
types, number of sizes, and order of layers. Many distinct 
vdW heterostructures can be created, each with different 
properties. 

A graphene/MoS2-xOx/graphene vdW heterostructure
exhibited positive memristive attributes including endurance 
of 10^7 cycles, and stable performance in 340 Celsius.

The diversity of arrangements possible by 2D materials drives 
research to enlarge the known family of suitable 2D materials 
for in-memory/in-sensor computing. Another ambition of 2D 
material research is to reduce thickness of the internal layer 
to monolayer scale, allowing conductive-point resistive 
switching as opposed to larger conductive filament switching.

Sources: [2]

Developmental Challenges
Fabricated memory arrays of the larger sizes needed for in-sensor computing are beyond current fabrication 
capabilities. Larger synthesized areas results in greater numbers of local defects, compromising performance. Also, 
2D metal, insulator, metal (MIM) arrangements for in-memory computing are limited to endurances of 10^6. 

Advances
New research of 2D materials and van der Waal aggregations is reviewing their properties of spin-orbit torque and 
ferroelectric polarization for in-memory neuromorphic computing. 2D materials are also being developed for use 
as optoelectronic synaptic devices where inputs are light stimulus, possibly opening a research pathway to the 
replication of human-type vision. 

II.2. Advances in Mechanisms, Architectures, and Device Configuration

A
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Organic Materials

Description
Organic semiconductors are thought to have high-potential for 
neuromorphic uses due to low-cost manufacturing, variety of 
switching mechanisms, low-power consumption, and most 
notably biocompatibility. Organic materials’ biocompatibility 
opens up a range of exciting possibilities including “biointerfaces, 
brain-machine interfaces, and biology-inspired prosthetics.”

Organic materials can replicate synaptic behaviors by filament 
forming, charge trapping, redox activity, and ion migration. 
Proof-of-concept demonstrations have shown organic synapses 
to be capable of replicating “synaptic weight as electrical 
resistance, excitatory postsynaptic potential, global connectivity, 
and pulse shaping” 

Organic-electronics is a relatively new category of electronics, 
and lags its inorganic counterpart in speed, density, 
stability/retention, and integrability. Recent publications have 
shown improvements in all of these areas, yet even state-of-the-
art purely experimental organic electronics has significant 
progress before it will have the ideal qualities for neuromorphic 
artificial synapses. 

Source: [2]; [6]

A

Developmental Challenges
Organic semiconductor technology is new relative to inorganic alternatives and hasn’t benefitted from 
years of effort towards realizing spatial reductions in size. As such, the current size of organic transistors is 
at the micrometer level, where artificial synapses should be less than 100 nms (1/10 of a single 
micrometer). 

Advances
For biointerfaces where achievements in scaling are less important, organic artificial synapses are thought 
to be promising. Researchers are now envisioning demonstrations of biointegrated, high-performance 
computing accoutrements. Gumyusenge et. al. expect that organic based neuromorphic bio-devices will 
“revolutionize areas such as healthcare, entertainment, and smart textiles, to name a few.” 

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Spintronics

Description
Spintronics are nanoelectronics/nano-magnets with adjustable spin and 
charge. Spintronics can be utilized as synapses in neuromorphic chip 
architecture in two ways.
• First, spintronic devices have a static magneto resistive effect; Changes 

to the magnetic field of spintronic devices affect resistance. The 
tuning/changing of the magnetic field can be employed to update 
synaptic weights. Magnetic tunneling junctions, spintronic memristors, 
and skyrmion proposals are generally based on the magneto resistive 
effect of spintronics.

• Spintronic’s have several dynamic properties that can be used for 
neuromorphic implementations. “…The stochastic switch of magnetic 
tunneling junction, the breathing mode of skyrmion size oscillation…” 
(Ref #13, page 47). These dynamic properties can be used for multi-
level analog neuromorphic computing.

Source: [2]; [5]; [13]

A B

Developmental Challenges
• Spintronics have low resistance ratios between high resistance and low resistance when used for 

binary storage of between 2 to 3: other memristors have such ratios in excess of 1000
• Large write currents are needed
• Poor write endurance (number of write operations a memristor can sustain)
• STT-MTJ has stochastic switching patterns

Advances
The novel three-terminal spin orbit torque magnetic tunnel junction (SOT-MTJ) stacks a metal layer on 
top of the fixed magnetic ferroelectric layer. This novel configuration achieves lower write energy 
dissipation, and higher write energy endurance. 

Magnetic Tunnel Junctions (MTJs)
MTJs are composed of two ferromagnetic layers containing a thin oxide 
layer (figure C). One of the ferromagnetic layers has a fixed direction of 
magnetization. The second ferromagnetic layer’s magnetization is arrayed 
in parallel or antiparallel to the fixed layer (see figure A). Parallel 
composition corresponds to low resistance, and antiparallel high 
resistance for binary memory. Multiple binary MTJs can be combined in a 
network to emulate a single analog synapse (see figure D).

C

D

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Neuromorphic Hardware Implementation

The following four 
slides introduce and 
assess each distinct 
neuromorphic 
implementation

Although traditional artificial neural 
networks are analyzed in this report, 
most experts strongly believe that 
the future of neuromorphic 
computing will be realized through 
Spiking Neural Networks (SNNs).

Nearly all recent commercial 
prototypes are based on SNNs, and 
SNNs are lauded for their potential 
energy-efficiency and performance 
relative to traditional artificial neural 
networks. 

II.2. Advances in Mechanisms, Architectures, and Device Configuration

Either Artificial Networks or as Spiking Neural Networks
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Description

• Artificial Neural Networks (ANNs) are a simplified form of biological neural learning 

patterns. These neural networks are arrangements of neurons connected by synapses. 

The neurons contain activation functions which modulate the inputted values from 

synapses. ANNs are generally made of multiple layers, with increases in layers 

generally enhancing the accuracy of deployed models. Thus, the data hungry ANNs are 

partially responsible for the movement towards more and more data collection.

• Learning is accomplished by the application of a neural network with specified 

adjustable parameters to training data. The cost-function, representing model error, is 

progressively minimized by gradient-descent based back propagation through 

adjusting synapse weights. Then, a user will select a chosen model for deployment.

• Inference is the application of a trained ANN model to new data. The new data is fed 

into the trained model, and the trained model will make a prediction on the new data.

• The bulk of computation in training and inference is costly matrix vector 

multiplications. Non-Volatile-Materials are currently explored for use as an accelerator 

to perform matrix multiplications, speeding up deep learning.

Artif ic ial  Neural Networks - Introduction
II.2. Advances in Mechanisms, Architectures, and Device Configuration
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ANN Hardware

Description
The discovery if memristors in 2008 opened the possibility of 
memristor-based accelerators for artificial neural networks. Vector 
Matrix Multiplication (VMM) accounts for the bulk of computation 
during ANN learning and inference. Memristor Crossbars have been 
demonstrated to perform VMM in 0(1) compared to 0(n^2) where n is 
number of rows and columns (in the case of a square matrix).

For VMM the resistances of the memristors are set to match the values 
of the matrix to be used in the multiplication. The input vector is 
“multiplied” by the crossbar matrix through inputting voltage into the 
Crossbar structure. The interactions between the input voltage and 
memristors produce an output current, which is translated through the 
application of Ohm’s Law and Kirchoff’s law into an output vector. Each 
computation occurs through the electrical interactions at the data 
point, which are computed in parallel.

Crossbars can be configured for either analogue or binary storage. 
Analogue crossbars require Digital Analog Converters (DACs) to modify 
digital inputs to analogue and Analog Digital Converters (ADCs) to 
modify analogue outputs to digital, consistent with modern computer 
data structures. 

Sources: [2]; [14]

Developmental Challenges
• The non-idealities of current non-volatile-material (NVM) memory candidates pose difficulties for the accurate 

programming of NVM synapse weights. 
• With continued inference, the conductance values of NVM synapses will evidence drift and degrade accuracy
• Efforts to maintain 16 bit fixed-point precision strain NVMs with requiring 2^16 unique resistance values
• Inefficiency of peripheral circuitry, especially analog-digital-converters (see figure B)

A B

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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ANN Hardware

Advances
• On-chip learning and closed-loop conductance monitoring have been implemented to account for issues 

with NVM synapse resistance modulation
• On-chip calibration has been introduced to monitor and correct drift
• Multiple memristors are coupled together to store a single synaptic weight
• Binarized, high-accuracy networks are in development to exploit NVM’s excellent binary storage 

capabilities

A B

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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The discovery if memristors in 2008 opened the possibility of 
memristor-based accelerators for artificial neural networks. Vector 
Matrix Multiplication (VMM) accounts for the bulk of computation 
during ANN learning and inference. Memristor Crossbars have been 
demonstrated to perform VMM in 0(1) compared to 0(n^2) where n is 
number of rows and columns (in the case of a square matrix).

For VMM the resistances of the memristors are set to match the values 
of the matrix to be used in the multiplication. The input vector is 
“multiplied” by the crossbar matrix through inputting voltage into the 
Crossbar structure. The interactions between the input voltage and 
memristors produce an output current, which is translated through the 
application of Ohm’s Law and Kirchoff’s law into an output vector. Each 
computation occurs through the electrical interactions at the data 
point, which are computed in parallel.

Crossbars can be configured for either analogue or binary storage. 
Analogue crossbars require Digital Analog Converters (DACs) to modify 
digital inputs to analogue and Analog Digital Converters (ADCs) to 
modify analogue outputs to digital, consistent with modern computer 
data structures. 

Sources: [2]; [14]
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Spiking Neural Networks - Introduction

Description
Spiking Neural Networks (SNNs) are a form of machine learning composed of synapses and 
neurons which can be used for supervised and unsupervised learning. Researcher interest in SNNs 
is driven by their more faithful replication of neural biological behavior with many neuromorphic 
researchers believing that large SNN models will outperform ANNs.  For a comparison of SNNs to 
ANNs see figure B

SNNs are defined by neural networks where individual neurons communicate through 
spikes/impulses via synapses. The synapses which causatively contribute to neuronal spikes are 
modified to have higher weights, with non-causative synapses experiencing weight reductions (see 
figure A). Neurons fire when their membrane potential reaches a certain threshold. 
Sources: [2]; [14]

Type of 
Neural 

Network
Neuronal Activity

Neuronal 
Memory

Synapse 
Adjustment

Function 
of Time

ANN

Real-valued activation 
functions which condition 
input values received 
from synapse(s). 
Common activation 
functions are ReLU, ELU, 
and the Sigmoid Function

Usually, 
neurons do not 
have memory

Synapses are usually 
adjusted based on 
stochastic 
backpropagation to 
minimize a cost 
function when applied 
to training data 

No

SNN

Neuron’s have adjustable 
states (membrane 
potential) and modulate 
received synapse spikes 
according to state, 
passing spikes on to 
other neurons when 
membrane potential is 
sufficiently high

The Neuron’s 
membrane 
potential is 
memory and 
encodes 
information of 
past frequency 
of activations

Synapses are 
potentiated (given 
greater weight) if their 
spike preceded a 
neuronal spike: if their 
spike assisted in 
developing the 
neuronal spike. 
Synapses experience 
depression if their 
pulse follows the 
neuronal spike. 

Yes, 
neuronal 
firing is 
temporal/ 
event-based

A

B

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Spiking Neural Networks – Hardware

Description
Nanotechnologies are appealing for neuromorphic 
computing for their high-density, and excellent power 
efficiency: Too, their combination of computation and 
memory is a more faithful approximation of biological 
neural performance than digital circuit, CMOS SNN 
hardware. 

SNN nanotechnology hardware are implemented as 
“large crossbar arrays of synapse circuits that represent 
at the same time the site of memory and of 
computation. The synapses in each row of these arrays 
are connected to Integrate-and-Fire (I&F) soma circuits, 
located on the side of the array. The soma circuits sum 
spatially all the weighted currents produced by the 
synapses, integrate them over time, and produce an 
output pulse (spikes) when the integrated signal crosses 
a set threshold. In turn the synapses are typically 
stimulated with input spikes, and convert the digital 
pulse into a weighted analog current. Depending on the 
complexity of the synapse and soma circuits, it is 
possible to design systems that can exhibit complex 
temporal dynamics…or to implement adaptive and 
learning mechanisms that can be used to ‘train’ the 
network to carry out specific tasks.”

Focus on Nanotechnologies
There exist several successful developments of SNN 
hardware using conventional CMOS technology 
(TrueNorth, Loihi, BrainScaleS, etc.). These case-
studies will be profiled elsewhere. These hardware 
implementations of SNNs have two weaknesses 
stemming from their storage of synaptic weights in 
DRAM/SRAM: 

1. Accessing and updating synaptic weights has a 
non-insignificant time cost

2. The current DRAM/SRAM-CMOS integration 
density inhibits scalability of neuromorphic 
systems

A. Achieving a neuromorphic computer 
with the number of synapses and 
neurons of the human brain would take 
up an entire room

As such, this section will focus on SNNs based on 
dense emerging nanotechnologies. 

Challenges
• Local-learning rules of SNNs aren’t yet shown to match the high-accuracy of ANNs backpropagation
• Though SNNs are generally robust to device imperfections, current memristor’s substantial non-idealities still 

compromise performance
• Online learning demands memristors with varied time scales

II.2. Advances in Mechanisms, Architectures, and Device Configuration
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Key Players: Samsung

Research Analysis
The Samsung Advanced Institute of Technology (SAIT) is 
actively researching innovations in hardware to empower 
machine learning with enhanced power efficiency. Their 
research areas include near/in memory computing, 
asynchronous spiking neural networks, brain-inspired 
learning and inference algorithms, low-power mixed 
signal computing architectures, and new synaptic 
memories.

SAIT constructed the first in-memory hardware based on 
Magnetoresistive Random Access Memory. MRAM was 
previously considered an unattractive material for its low 
resistances. Samsung researchers adjusted in-memory 
computer architectures from ‘current-sum’ to ‘resistance-
sum’ in response to MRAM low resistances. The MRAM 
computing chip was ran AI computing with 98% accuracy 
for classifying hand-written digits and 93% accuracy for 
facial recognition. 

Sources: [4]; [20]; Pitchbook Data

SAIT Neuromorphic Luminaries

Dr. Donhee Ham, 
SAIT Fellow & 
Harvard Professor

Dr. Seungchul Jung,   
SAIT Staff 
Researcher 

Dr. Sang Joon Kim, 
SAIT VP of 
Technology

Abbreviations Taxonomy
IM: Information Technology and Mobile Communications,
CE: Consumer Electronics,
DP: Display Business

, 2017

II.3. Key Players
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Key Players: IBM

Research Analysis
IBM was an early entrant to the field of Neuromorphic Computing, 
receiving funding from as early as 2008 from the DARPA SYNAPSE program 
to iteratively construct and improve neuromorphic chips. Early models 
were “Golden Gate”, and “San Francisco” (~256 neurons). IBM’s later 
“TrueNorth”, first created in 2014, contains 1M neurons. IBM’s 2018 
NS16e-4 scale-up scale-out system scaled to 64M neurons. These 
neuromorphic chips are trained off-chip (on-chip training is possible and 
has been implemented in other models). Trained neural networks are 
loaded into the chip, which then performs inference. IBM has 
progressively been designing development / programming environments 
for TrueNorth (Compass Simulation Environment was the first iteration). 

IBM’s TrueNorth chip is composed of CMOS technology, rendering it with a 
low-density and high-manufacturing cost. Exploration of non-CMOS 
synapse material is important to densify and reduce costs of 
neuromorphic chips. 

IBM’s Zurich Lab is exploring many topics in neuromorphic computing in 
addition to IBM’s Almaden TrueNorth research initiative. According to our 
expert consultations, at present, IBM has discontinued its work on 
TrueNorth, but continues to research memristor materials at its Zurich 
Lab.

Dr. Jonas Weiss, 
Research Scientist

Dr. Abu Sebastian,   
Principal Researcher

IBM Neuromorphic Luminaries

Dr. Evangelous
Eleftheriou
IBM Fellow

Dr. Bert Jan Offrein
Principal Research 
Staff Member

II.3. Key Players
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Key Players: Intel

Research Analysis
Intel is prominent in neuromorphic computing research, having 
launched one of the first neuromorphic chips and founded the 
Neuromorphic Research Community, a network of 100+ research 
groups.  

Intel’s Loihi was created in 2017 and revamped to Liohi 2 in 2020. Lohi
is based on a spiking neural network (SNN) architecture with 1M 
neurons and 120M synapses per chip that is constructed for on-chip 
learning. The 128 neuromorphic cores each contain interlinked 
neurons and receive spike impulses. Intel provided Nx SDK software 
to program Loihi through low-level programming. Intel’s new offering 
is Lava, a higher-level programming language with enhanced 
accessibility that allows users to engage with Loihi 2 without detailed 
knowledge of the hardware implementation. Loihi 2 and Lava are 
made available to members of Intel’s Neuromorphic Research 
Community to develop new use-cases and commercialize 
neuromorphic technologies. 

Demonstrated use-cases for Loihi and Loihi 2 include: 
• Robot Arm Control
• Visual-tactile sensory perception
• Odor Recognition
• Database similarity query
• Optimization problems
• Modeling Scientific Diffusion

Dr. Abu Sebastian,   
Principal Researcher

II.3. Key Players



IBM and Intel Neuromorphic Processors 

IBM’s TrueNorth was constructed 
mainly for energy-efficiency

Intel’s Loihi (and Loihi 2) strives for a 
balanced mix of energy efficiency 

and computational speed

Loihi and TrueNorth experience 
improved speed/performance 
relative to CPU/GPUs for target 

applications suited for 
neuromorphic computing

II.3. Key Players

Demonstrate superior energy efficiency
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Key Players: Hewlett Packard

Research Analysis
Hewlett Packard is divided into four operating segments. The 
Hybrid IT segment is responsible for neuromorphic research and 
development. Hewlett Packard joined the Open Neural Network 
Exchange in 2018 to assist its ongoing research in neuromorphic 
computing. Hewlett Packard labs has been active in 
neuromorphic computing since its discovery  of the memristor in 
2008 during analysis of titanium dioxide. 

Hewlett Packard and Dr. Miao Hu developed a Dot-Product 
Engine (DPE) in Hewlett Packard Labs. The DPE is an 
experimental product that performs matrix multiplications in 
parallel on memristor-based crossbars. The DPE uses the TiO2 

memristor. The DPE was able to tune each memristor to target 
conductance, and “do more than eight thousands of 
multiplicaitons per time step in a tiny 128x64 memristor 
crossbar.” The project also achieved over 90% on MNIST (a 
popular dataset for testing deep learning algorithms). Two 
publications on the DPE have been published in Advanced 
Material and Nature Electronics.

Since its development of the DPE, Hewlett Packard has had 
minimal activity in the area of neuromorphics. A 2021 news 
release discussed the potential of neuromorphics and may signal 
renewed focus on neuromorphic technology.

Dr. Abu Sebastian,   
Principal Researcher

II.3. Key Players
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Key Players: HRL Laboratories

Research Analysis
A 2013 HRL neuromorphic project was the creation of a continuously 
security authenticating edge device, for which HRL received $2.2M in 
funding from the U.S. Department of Homeland Security Science and 
Technology Directorate. 

HRL Laboratories received funding from DARPA’s Foundations Required 
for Novel Compute (FRANC) program to develop a memristor based 
neuromorphic processor. Dr. Wei Yi was the Principal Investigator on 
the project, and the primary author of the nature journal article 
“Biological plausibility and stochasticity in scalable V02 active 
memristor neurons”, which was the direct product of the HRL 
neuromorphics project.  The HRL neuromorphic circuits contained 500 
memristor synapses and 60 neurons. Moreover, the circuit “can 
compute convolutions for image classifications – the main workload of 
today’s AI inference hardware”, with energy efficiency “10 times better 
than the current state-of-the-art neuromorphic processor”. Dri Yi’s 
journal article has been cited 171 times and resulted in his elevation as 
an IEEE senior member. 

The last listed neuromorphic project in HRL’s archives is dated in 2019.

Sources: [30];

Dr. Abu Sebastian,   
Principal Researcher

HRL Neuromorphic Luminaries

Dr. Wei Yi
Principal Investigator

Dr. Jose Cruz-
Albrecht
Co-Principal 
Investigator

Dr. Dana Wheeler
Researcher

HRL is notable for sponsoring 
Neuromorphic Projects based on 
memristor and CMOS technology. 

II.3. Key Players
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Key Players: BrainChip Holdings

Research Analysis
Australian company BrainChip Holdings, founded in 2011, is 
wholly dedicated to neuromorphic computing. BrainChip 
holdings spent about a decade after its inception developing 
neuromorphic System-on-Chip (NSoC) systems. The Akida chips 
was the result, a neuromorphic CMOS chip designed for edge 
use-cases.  Akida has been demonstrated to successfully 
complete object classification and keyword spotting, among 
other neural network applications. Currently, Akida chips are 
produced by TSMC in Taiwan. 

BrainChip is presently attempting to transition from its R&D 
stage to the commercialization of Akida. BrainChip’s website 
proudly declares that Akida “is the world’s first commercial 
neuromorphic processor.” As of 2021 BrainChip was seeking 
“Early Access Customers for further testing and verification to 
see how they work as part of customers’ products.” So, Akida is 
not yet at full-commercialization. Additionally, in 2022 
“BrainChip licensed its Akida IP to ASIC industry heavyweights 
MegaChips and Renesas to help enhance and grow their 
technology positioning for next-generation, cloud independent 
AI products”. 

Sources: [31], [32];

Dr. Abu Sebastian,   
Principal Researcher

A

See Figure A above for information on BrainChip IP  Sources: Pitchbook Data;

II.3. Key Players
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Lab Name Description
Affiliated Faculty / 

Researchers

California NanoSystem’s Institute 

As computational tasks become increasingly difficult in a world of big data, systems to address modern challenges in collection,
processing, and analysis of large datasets are increasingly necessary. Researchers at CNSI are attacking the challenges of next-
generation computing by combining concepts of neuroscience and machine learning with nanoscale materials. An exemplar of this
approach are James Gimzewski and Adam Stieg, who are developing complex nanoarchitectures that have structural similarity to 
neocortex and exhibit properties which make them an ideal platform to addresses the difficulty of mimicking biological neural
networks in artificial computing environments

Dr. Yong Chen; Dr. James 
Gimzewski; Dr. Adam Stieg; Dr. 

Kang Wang

Carnegie Mellon: Neuromorphic 
Computer Architecture Lab

The Neuromorphic Computer Architecture Lab (NCAL) is a new research group in the Electrical and Computer Engineering 
Department at Carnegie Mellon University, led by Prof. John Paul Shen and Prof. James E. Smith to design new processor 
architectures that capture the capabilities and efficiencies of the brain’s neocortex for energy-efficient, edge-native, on-line, 
sensory processing in mobile and edge devices. 

Prof. John Paul Shen; Prof. James E. 
Smith

Institute of Neuroinformatics
The Institute of Neuroinformatics was established at the University of Zurich and ETH Zurich in 1995. The mission of the Institute is 
to discover the key principles by which brains work and to implement these in artificial systems that interact intelligently with the 
real world. 

Prof. Tobi Delbruck; Prof Benjamin 
Grewe; Prof. Richard Hahnloser; 

Prof Giacomo Indiveri;

Intelligent Computing Lab - Yale
Yale’s Intelligent Computing Lab is led by Prof. Priyadarshini Panda to research neuromorphic computing. The lab’s research spans 
developing novel algorithms and new architectures (CMOS based and w/ emerging nanotechnologies). The lab has received funding
from Amazon, the NSF, the Center for Brain Inspired Computing, and DARPA. 

Prof. Priyadarshini Panda

Neuromorphic Artificial Intelligence 
Lab - RIT

Over the past decade, research in the Nu.AI lab is paving a path to revolutionize the next generation of intelligent platforms. Our 
short term goal is to develop lifelong learning systems that utilize minimal resources (e.g.: energy, form factor). We strive to 
achieve this through an interdisciplinary research approach.

Prof. Dhireesha Kudithipudi; Dr. Eric 
Bohannon; 

Neuromorphic Computing Lab at 
Pennsylvania State

We believe achieving machine intelligence with brain-scale efficiency will be enabled by an end-to-end research effort ranging from 
sensory processing to neuromimetic hardware and associated learning methodologies. To that end, we are driven by a highly inter-
disciplinary perspective across the computing stack that combines knowledge from devices and circuits to machine learning and
computational neuroscience.

Dr. Amit Shukla; Kezhou Yang; Sen 
Lu; Nafiul Islam

Salleo Research Group
The Salleo Research Group is interested in novel materials and processing techniques for large-area and flexible electronic/photonic 
devices. We also study defects and structure/property relations of polymeric semiconductors, as well as nano-structured and 
amorphous materials in thin films.

Prof. Alberto Salleo; Dr. Alexander 
Giovannitti; Dr. Quentin Thiburce

Key Academic Research Labs
II.3. Key Players



Company Description
Year

Founded
HQ Pitchbook Valuation

[USD Millions]

Number of
Active Patents

Applied Brain
Research

Developer of low-power edge and cloud AI applications and development tools designed to make 
the same.

2014
Ontario, 
Canada

$.97M
as of 2014

8 Active
13 Pending

FutureAI
Operator of a deep technology company intended to develop algorithms to revolutionize artificial 
intelligence. 

NA
Washington 
D.C., USA

NA NA

General 
Vision

Developer of embedded artificial vision silicon chips designed to permit everyday objects to have 
visual perception of their environment and interact with their owner. 

1987
Petaluma, 
USA

NA
NA

GrAI Matter 
Labs

Developer of programmable neuromorphic computing chips designed to bring sensor analytics 
and machine learning to every device on the edge. 

2016
Paris, 
France

Early stage VC deal 
in 2020 of $14M for 

unknown 
ownership transfer

6 inactive
6 pending

Knowm Inc
Developer of digital computing processors designed to commercialize AHaH Computing and the 
neuromemristive technology stack.

2015
Santa Fe, 
USA

NA
NA

Numenta
Developer of a software-based neocortical theory designed to study biological learning principles. 
The company's platform offers an HTM (Hierarchical Temporal Memory.

2005
Redwood 
City, USA

$351M
as of 2021

28 active
4 pending

39

Key Startups

Sources: Pitchbook Data; Company Websites; 
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Key Startups

Company Description
Year

Founded
HQ

Pitchbook 
Valuation 

[USD Millions]

Number of
Active Patents

IniLabs
Provider of neuromorphic technologies solution designed to promote neuromorphic engineering 
for the worldwide community of technology developers.

2009
Zurich, 
Switzerland

NA NA

Innatera
Nanosystems

Manufacturer of ultra-efficient neuromorphic processors intended to mimic the brain's 
mechanisms for processing sensory data.

2018
Rijswijk, 
Netherlands

NA 1 Pending

Koniku
Developer of an organic neurocomputation platform designed to interface with the real world 
through real biological neurons.

NA
San Rafael, 
USA

$256M
1 Active

5 Pending

MemComputing
Developer of quantum computing technology designed to accelerate the optimization of complex 
and time-consuming problems.

2016
San Diego, 
USA

NA NA

SpiNNcloud
Systems

Developer of real-time computing platform designed to leverage research from the human brain 
project. 

2021
Dresden, 
Germany

NA NA

SynSense
Developer of neuromorphic computing platform designed to provide a combination of ultra-low 
power consumption and low latency performance.

2017
Zurich, 
Switzerland

$30.89M
as of 2021

NA

Vicarious
Developer of an AI-based neuro and cognitive science-based robot technology designed to mimic 
the function of the human brain.

2010
Union City, 
USA

$400M
as of 2017

10 active
4 pending

Sources: Pitchbook Data; Company Websites; 
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Status Quo Horizon 1 –
Specialized Designs

Horizon 3 –
Scaled up systems

Horizon 2 –
Intelligent Extreme Edge Co-Processors

2022 2025

Neuromorphic  Computing Appl icat ions Horizon Mapping 

2030 2035 to 2040

Acceleration for datacenter 
optimization workloads

Recommendation systems

Scientific Computing, HPC

II.4. Target Applications

Sources: Expert Consultations; Intel Neuromorphic Research Conference, 2022

Audio and other signal 
processing functions in 

SoCs

Scene awareness 
and localization

Aerospace and 
robotics devices

Sensor Integration

Wireless signal 
processing and channel 

optimization

IP and embedded 
accelerators for Intel 
Foundry customers

Model predictive 
control

Navigation and 
planning

Consumer Devices
General-purpose 

research chips and 
software framework



Neuromorphic Computing Target Application Qualities
Based on Neuromorphic Computing’s Contemporary Status

Power 
Constrained

Latency 
Constrained

Processes 
real-time 

Signals

Slowly 
evolving 
structure

Benefit from 
shallow 
online 

learning

Apply deep 
learning for 

offline 
training

With continued evolution and growth, neuromorphic target applications requirements  will become less restrictive 

An Ideal Problem to be solved by 
Neuromorphic Computing

II.4. Target Applications
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Target Application: Robotics

Description
Neuromorphic hardware is considered a key innovation for the 
development of intelligent robots that can operate in dynamic, 
uncontrolled environments. The Robotics field is an important 
application for neuromorphic computing as there exists substantial 
demand for robots capable of safely operating in a variety of 
conditions with minimal training.

Early proof-of-concept neuromorphic robotics demonstrations may 
give way to sophisticated developments built off standardized 
software, dynamic vision, mature neuromorphic chips, and spiking 
neural network architectures.

Sources: [2]; Neura Robotis Website; Intel Neuromorphic Research 
Conference, 2022;

Remaining Challenges
• Remarkable hardware plasticity is a requirement for 

neuromorphic robotics
• The vision of autonomous, quickly-adapting robots is based on a 

level of intelligence that will require massive neural networks in 
terms of # of synapses & neurons – neuromorphic robotics will 
require high memory/computing densities

David Reger
II.4. Target Applications
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Target Application: Robotics

Description
Neuromorphic hardware is considered a key innovation for the 
development of intelligent robots that can operate in dynamic, 
uncontrolled environments. The Robotics field is an important 
application for neuromorphic computing as there exists substantial 
demand for robots capable of safely operating in a variety of 
conditions with minimal training.

Early proof-of-concept neuromorphic robotics demonstrations may 
give way to sophisticated developments built off standardized 
software, dynamic vision, mature neuromorphic chips, and spiking 
neural network architectures.

Sources: [2]; Neura Robotis Website; Intel Neuromorphic Research 
Conference, 2022;

Development of event-driven visual 
perception systems for dynamic 
robotics

Creation of integrated models of 
perception, cognition, and behavior 
based on SNNs

Merging of ANNs and SNNs to 
optimize SNNs for management of 
motor control

R
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h
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w
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Neuromorphic 
robots capable of 
safely working in a 

range of 
environments

Remaining Challenges
• Remarkable hardware plasticity is a requirement for 

neuromorphic robotics
• The vision of autonomous, quickly-adapting robots is based on a 

level of intelligence that will require massive neural networks in 
terms of # of synapses & neurons – neuromorphic robotics will 
require high memory/computing densities

David Reger David Reger founded Neura Robotics to make breakthrough 
advances in the field of cognitive, collaborative robots. 
David presented to Intel’s Neuromorphic Research 
Community in April 2022: his vision for quickly adaptive, 
energy-efficient collaborative robots is predicated on 
incorporating neuromorphic computing. 

II.4. Target Applications
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Target Application: Self-driving Car

Description
The Machine Learning boom of 2015 to 2020 based on the impressive 
achievements of Artificial Neural Networks heralded remarkable hype 
for the self-driving car. The US Secretary of Transport stated in 2016 
that automated self-driving would be widespread by 2021. Clearly, 
expectations have begun to deteriorate (see image A).  The complexity 
of driving environments and high safety requirements of fully 
autonomous vehicles combine to deter their development for the 
foreseeable future. Too, Table 1 for measures on the Total Operations 
per Second to ascend to L5 based on conventional computing 
hardware. “One model suggests a range reduction of the order 9-20% 
for the control systems for Level 4 ADAS.”

Enter neuromorphic computing: A key value of neuromorphic 
hardware is its design curated for the implementation of SNNs. Where 
ANNs are simplified, abstracted versions of biological neuronal 
information processing/storage, SNNs are more dynamical models of 
biological neural activity. The temporal, highly-complex, highly-
dynamic nature of SNNs make them extremely difficult to build on 
conventional hardware. Should neuromorphic computing realize the 
field’s potential to construct large-scale neuromorphic hardware 
comparable in neuronal scale to the human brain, many researchers 
expect a flexibility, power-efficiency, and training efficiency that will 
empower fully autonomous vehicles. 
Sources: [2]; BMW Case Studies; Intel Neuromorphic Research 
Conference, 2022;

A

Dr. Mohsen Kaboli
Principal Scientist and Lead of Artificial Intelligence for the BMW group, Dr. 
Mohsen Kaboli presented to Intel’s Neuromorphic Research Community in April 
2022 to share his work on neuromorphic computing. Dr. Kaboli views 
neuromorphic computing as a pathway towards projecting BMW’s iNEXT from 
level 3 to level 5 ADAS and to creating next-generation intelligent interiors.

II.4. Target Applications



46

Target Application: Edge Computing

Description
AI powered products are becoming ubiquitous: Smart TVs, refrigerators, 
alarm clocks, etc. are all nearly commonplace. These products collect 
data which delivers optimization based on AI learning. However, a 
significant portion of the machine learning for these edge devices is 
performed in data centers. This setup requires that data be transferred 
back and forth between collecting devices and data centers. The latency 
of data access is significant as data must be shuttled back and forth. 
Another consideration is compromised personal privacy with data stored 
and processed in centralized locations. 

Edge AI is a solution that embeds smart processing within edge devices. 
However, traditional power-hungry AI algorithms often exceed the stiff 
resource constraints of edge devices. Neuromorphic computing is 
considered a leading method for achieving Edge AI as its inherent energy 
efficiency and latency reductions should allow energy constrained edge 
devices to perform smart processing. 

Accenture Labs, an early exponent and research partner for Intel’s 
neuromorphic loihi chips, expects that early use-cases for neuromorphic 
edge computing will be “adaptive robots, smart vehicles, and advanced 
consumer interfaces.” As Accenture’s Lead R&D Director states, 
“Neuromorphic is made for the edge!”

Sources: [2]; Accenture Case Studies; NEOM Website; Intel Neuromorphic Research 
Conference, 2022;

Noha, Al-Harthi, PhD
Dr. Al-Harthi is the Technology Lead for NEOM and has played a principal role in 
NEOM’s plans for a smart city / cognitive city to be constructed in Saudi Arabia. 
NEOM is estimated to have a $500 billion budget for the project. Dr. Al-Harthi’s
Neuromorphic talk presented to Intel stated that neuromorphic computing will 
be a key technology integrated into the urban fabric of NEOM’s development.  

A

Figure A displays an MIT 
drone that utilized HRL’s 
Surfrider neuromorphic 
chip to “learn to fly”.  

II.4. Target Applications
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Main Challenge by Neuromorphic Segment

Materials Hardware Software

Non-Ideality 
of Materials

Commercially ready 
neuromorphic chips are 
composed of traditional CMOS 
technology, limiting achievable 
densities. Emerging 
nanotechnologies have 
remaining challenges preventing 
their incorporation into novel 
neuromorphic chips. Thus, the 
density of neuromorphic chips 
remains limited by viable 
materials. 

Large-Scale 
Heterogeneous 

Integration

Neuromorphic chips perform 
well compared to CPUs/GPUs for 
certain Machine Learning tasks, 
especially those involving 
recurrence. However, there is 
not yet a robust framework for 
neuromorphic chips to operate 
in concert with CPUs/GPUs on 
large machine-learning tasks. 
Lava is being developed for 
heterogenous optimization. 

Infancy of 
Neuromorphic 

Software

Neuromorphic software that is 
high-level and accessible to the 
layperson is not yet developed. This 
inhibits the size of the 
neuromorphic user base, reducing 
growth in neuromorphic 
computing. 

Intel’s Lava is being developed with 
the aim for it to be compatible with 
multiple neuromorphic chips and 
for it to become increasingly high-
level/accessible. 

II.5. Requirements and Challenges
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memory Computing

Section III
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In-Memory Products Show Significant Progress Towards Overcoming 
Memory wall/Von Neumann bottleneck

Description
The separation of memory and computation units in computer architecture results in significant energy costs and time delays due to non-insignificant memory 
latency (the time it takes for processing units to access data from memory). A promising architectural reconfiguration is to co-locate memory and processing units 
to enable in-memory computation. In-memory computing with traditional memory substrates (SRAM, DRAM, and NAND) attempts to modify existing memory 
cells to perform computation with computational circuits peripheral to memory arrays or internal memory arrays modified for certain compute operations. 
Historically, this research trajectory was considered infeasible. However, several commercial in-memory products have been developed in the last decade 
showing significant progress. 
Sources: [3]

Disadvantages
• Significant investment cost to develop new 

memory cell architectures
• Very low density of new cell architectures
• Additional issues unique to SRAM; DRAM; 

NAND

Advantages
• May have the potential to overcome the 

memory wall / Von Neumann bottleneck
• Enable large bandwidth access to data
• Reduces memory latency

III.1. Technology Categorization
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SRAM, Though more Expensive than DRAM, Potentially Addresses Data Transit Cost 
Associated with GPU Intensive Computing (e.g. data science, deep learning, computer vision)

Description
Static Random Access Memory (SRAM) cells are temporary 
storage (volatile) optimized for quick-access. SRAM has a 
lower density than DRAM, and higher manufacturing costs. 
Thus, SRAM is used for CPU cache and register memory. In-
SRAM computing may be an effective replacement for 
dedicated accelerator chips, GPUs. The use of GPUs for co-
processing incurs data movement bottlenecks as data travels 
via PCIe busses from CPU to GPU and vice versa. In-SRAM 
computing minimizes data movement and additional area 
required for computation (Titan XP GPU is 471 mm^2 where 
9x more computing resources can be generated by enlarging 
SRAM by 15.8 mm^2). With slight modification of the row 
decoder, in-SRAM computing can support logical operations 
(AND, OR, NOR) through bitline sensing without overwriting 
data (unlike DRAM charge-sharing). These logical operations 
can be extended to support Bit-Serial Arithmetic for Integers 
and Floating-Point numbers. A key benefit of this form of in-
SRAM computing is that is leaves the internal SRAM memory 
arrays unmodified. Other in-SRAM computing architectures 
(to be discussed later) alter internal SRAM memory arrays, 
decreasing density and ofttimes increasing access latency. 
Sources: [3]

III.1. Technology Categorization
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DRAM, In-memory

Description
Near-memory DRAM computing is a more common novel 
computing approach than in-memory DRAM computing. In-
memory DRAM computing faces several challenges

1. incorporation of logical elements lowers 
density

2. May lower computation throughput
A promising in-memory DRAM strategy is charge sharing. 
“Charge sharing techniques activate more than one wordline
and perform bitwise operations by exploiting altered charges 
in capacitors connected to the same bitline.” By this method, 
logical operations can be performed on stored memory. It 
should be noted that in-memory DRAM lags in maturity 
behind in-memory SRAM and even near-memory DRAM.

Fujiki et. al.  In their excellent summary text on in-memory 
innovations state that despite challenges for charge sharing, 
they expect that “the next generation will likely see…the 
emergence of comput capable DRAM.” However, the in-
memory candidates that are likely to succeed are those 
which minimize changes to DRAM cell design. Conversely, 
“We speculate that the drastic change in cell design… may 
not be practical” 

Sources: [3];

III.1. Technology Categorization
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Major In-Memory Developments
Tend to focus on machine learning and spatial computing use cases

In-Memory SRAM for ML
Hsu et. al. built computation-in-memory (CIM) SRAM for high-speed, energy-
efficient computing in 2021. Their innovation of using dynamic current-steering 
digital-analog-converter accomplished 2 times greater energy efficiency over 
previous CIM SRAMs. Hsu’s other innovation is the unified charge-processing 
network which boosted “area and energy efficiencies by 1.15x and 1.38x.” CIM 
SRAM Parameters are as follows:
• Throughput: 186.18 GOPS
• Energy Efficiency: 41.87 TOPS/W
• Area Efficiency: 3288.4 GOPS/mm2

Throughput, energy efficiency, and area efficiency represent 2.26x, 1.12x, and 
2.89x improvements over previous best of class CIM SRAM demonstrations. See 
Table A below for a detailed comparison. ]

Sources: [15]

3D CIM SRAM
Binary Neural Network Accelerator

Low power edge devices are more often used for inference than training of neural 
networks. To reduce computational complexity, edge devices will ofttimes run inference 
on binarized neural networks.  CIM SRAM can implement many of the required 
operations with modification through adding additional transistors. However, the 
reduction of area efficiency posed by transistor addition has been a deficiency in these 
attempts.

Choi et. al. implemented a monolithic 3D integration through monolithic inter-tier vias 
to create 3D CIM SRAM optimized as a binary neural network accelerator. Their model 
“reduces the average execution time and energy by 39.9% and 23.2%, respectively” 
compared to 2D CIM SRAMs (See Table B extracted from paper). 

Sources: [16]

Terms Taxonomy
• GOPS: Giga (billion) Operations Per Second
• TOPS: Tera (Trillion) Operations Per Second 

2 Layer 4 Layer

A B

III.2. Advances in Mechanisms, Architectures, and Device Configuration
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Many Startups, many in SF Bay Area, Actively Monetizing In-Memory Innovations 
Noteworthy startups listed below

III.3. Key Players

Company Description Year Founded HQ
Pitchbook Valuation 

[USD Millions]
Number of 

Active Patents

Analog Inference
Developer of deep sub-threshold analog in-memory computation designed to run 
complex networks at full resolution with ultra-low latency and no active cooling.

2018 Santa Clara, 
USA

$60M as of 2021 NA

Axelera AI
The company's platform integrates a custom dataflow architecture with multicore 
in-memory computing, enabling users to minimize power consumption to deliver 
edge applications for a sustainable tomorrow.

2019 Eindhoven, 
Netherlands

$18M as of 2021 NA

D-Matrix
The company's platform is based on in-memory computing techniques for the data 
centre and is focused on attacking the physics of memory-compute integration 
using mixed-signal and digital signal processing techniques

2019 Cupertino, 
USA

$26M as of 2021
NA

GigaSpaces
Technologies

The company's platform offers in-memory computing and operational data store 
technologies for real-time insight into action and transactional processing

1999
New York, 
USA

$13.5 M as of 2021 1 inactive

GridGain Systems
Provider of an In-Memory computing platform intended to offer services for big 
data systems to increase data throughput and minimize latency.

2007
Foster City, 
USA

$50M as of 2016
NA

Hazelcast

Developer of an open-source in-memory data grid platform designed to unify 
transactional, operational, and analytical workloads. The company's platform has 
installed clusters that offer operational in-memory computing, enabling companies 
to manage their data and distribute processing using in-memory storage

2012
San Mateo, 
USA

$43M as of 2017 2 Active

Sources: Pitchbook Data; Company Websites; 
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In-SRAM computing is Key Enabler of AI-based Internet of Things (AIoT)

III.4. Target Applications

AIoT Requirements

Multiply & 
Accumulate 

(MAC) capable
Area EfficientEnergy Efficient Logic Capable

Inference 
Accuracy

Commentary
The extension of AI inference to resource-constrained edge devices will require 
improvements to edge computing architecture to improve energy efficiency while 
reducing required data movement. CIM SRAM computing has been demonstrated to be 
able to perform highly parallel logic operations and MAC operations with good energy 
efficiency and inference accuracy. A remaining obstacle is that SRAM memory 
modifications that enable in-place computing decreases the density of SRAM memory 
arrays. Many edge devices have severe spatial constraints. However, CIM SRAM research 
continues to achieve better area efficiency.

Sources: [17]

AIoT
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Several Design Tradeoffs 
(precision v. margin and density) Inhibit In-Memory potential

Overview
The transition from Von-Neumann architectures to 
computation-in-memory (CIM) SRAM computing (See 
figure A) is promising to achieve AI-based internet of 
things (AIoT) by enabling inference for resource 
constrained edge devices. Key challenges remain, several 
of which are summarized below.

Sources: [17]

III.5. Requirements and Challenges

A

Readout precision vs. Signal Margin

As the precision of multiply and 
accumulate (MAC) operations is 
enhanced, the signal margin (difference 
in voltage between two consecutive MAC 
values) is decreased. Smaller signal 
margins result in greater error by sense 
amplifiers and decreases in system-level 
computing accuracy. 

SRAM Densities

The modification of SRMA memories to 
perform in-place computations is 
sometimes accomplished by the 
imputations of transistors, lowering 
SRAM density / area-efficiency. Larger 
chip area increases costs and affects the 
commercial potential of the device. The 
tradeoff between performance and area 
efficiency (GOPS/mm2 ) is a key challenge 
for in-SRAM computing. 



Advances in 
Reservoir Computing

Section III
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Hardware-Based Reservoir Computing 
A promising architecture for Machine Learning Devices

3D Memory Cubes
• Hybrid Memory 

Cube (HMC), 
Samsung/Micron

• High-Bandwidth 
Memory (HBM), 
Samsung/AMD/SK 
Hynix

• PIM Chips, 
UPMEM

IV. 1. Technology Categorization

Description
Reservoir Computing is a computational framework derived from several 
recurrent neural network models. In reservoir computing there exists a fixed 
reservoir which maps data inputs into high-dimensional output. The output is 
trained with a simple model such as linear regression or classification. An 
example of a reservoir is a fixed recurrent neural network  where synapse 
weights remain constant. As the reservoir is fixed, reservoir computing 
generally involves faster training than other machine-learning approaches. 
Reservoir Computing is most often employed for the study of dynamic time-
series data. 

Physical Reservoir computing is possible where the reservoir can be a 
“complex mechanical structure” (see figure A) with two required properties:

1. Maps nonlinearly low-dimensional inputs to higher dimensions
2. Integrates information over time

The surface of water in a bucket was used by Fernando and Sojakka in 2003 
as a physical reservoir for vowel classification. “The input was sound waves 
exciting the water and the readout was carried out through the pixelated 
version of video recordings of the water surface.” Reservoir computing 
hardware has received research interest as a novel computer architecture 
with low training cost. 

Sources: [3[; [23]; [24]

A

Reservoir Computing 
Applications

• Pattern Classification
• Time Series Forecasting
• Pattern Generation
• Adaptive Filtering and Control
• System Approximation
• Short-Term Memory
Source: [23]
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FPGA Reservoir Computing (RC)
Implementations Show Promise

IV. 2. Advances in Mechanisms, Architectures, and Device Configuration

FPGA Reservoir Computing
Field Programmable Gate Arrays (FPGAs) are often used for the implementation of 
Artificial Neural Networks. As such, they are readily usable to realize reservoir 
computing in hardware. The creation of an artificial neural network of set synaptic 
weights in the FPGA acts as the reservoir. Binary neurons are often chosen for their 
compatibility with digital logic. Empirical examinations of this layout have 
“…confirmed that the reservoir computer on the FPGA board has a significant 
advantage in the high-speed processing over the software-based reservoir 
implemented in a high-end laptop. 

Sources: [23];

Other Advances
• Deep Reservoir Computing: The progressive software development of Deep 

Reservoir Computing wherein multiple fixed reservoirs are employed has found 
that this is an effective framework “for diversifying temporal representations and 
generating rich dynamical behavior.” Researchers are attempting to apply Deep 
Reservoir Computing to hardware implementations.

• Successful hardware implementations of electronic Reservoir Computing and 
photonic reservoir computing have been demonstrated. These are the most 
mature forms of RC hardware. 

• Reservoir Computing is also experimented with for combination in neuromorphic 
spiking neural networks (see figure A)

Sources: [3];

A
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Lab Name Description
Affiliated Faculty / 

Researchers

Daniel P. Lathrop’s Nonlinear Dynamics 
Lab – University of Maryland

The lab’s current work with ML electronics focuses on a specific paradigm called Reservoir 
Computing, which excels at tasks requiring rapid inference. Its applications include prediction of 
complex phenomena like chaotic time series, speech recognition, and rapid image 
recognition/classification.

Dr. Daniel Lathrop; Dr. Katepalli
Sreenivasan; Ms. Kaveri Joshi

Teuscher Laboratory – Portland State 
University 

The mission of Teuscher Lab is to review the foundations of computer technology to help solve 
tomorrow’s technological and societal problems. We use a radical interdisciplinary approach and 
apply tools from computer science, computer engineering, physics, biology, complex systems science, 
and cognitive science to the study and the design of next generation computing models and 
architectures.

Dr. Christof Teuscher; Dr  Neil 
Babson; Mr. Jack Cannon

Tsinghua LEMON: Laboratory of 
Emerging Memory and Novel 

Computing

An interdisciplinary Tsinghua laboratory with close research relationship with the Tsinghua Institute 
of Microelectronics that explores novel computing paradigms and memory devices. 

Dr. He Qian; Dr. Huaqiang Wu; Dr. 
Ning Deng

Key Academic Research Labs
IV. 3. Key Players
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Reservoir Computing Hardware
Ideal for applications involving dynamic, temporal data

IV. 4. Target Applications

Biomedical Visual Audio Machinery Security Financial Social

EEG fMRI

ECG

Heart rates

Sounds

Speech

Music

Images
Videos

Sensors

Motors

Cryptography

Stock Index

Exchange 
Rate

Grammar

Syntax

Smartphone

Biomarkers
Language

Robots

Stock Price 
Models
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Lagging RC Design Principles Comprehension
Constrains RC Hardware

IV. 5. Requirements and Challenges

Overview
Physical Reservoir computing aimed at hardware construction is still in its infancy. It faces numerous 
challenges obstructing its maturation.
Sources. The enormity of the challenges and very early research direction make reservoir computing 
very far from hardware commercialization. [3]

Lack of Demonstrated 
Utility for Industrial 

Applications

Not yet Cost-
Competitive with 

Other ML Hardware

Opaque Design 
Principles 

Too few
Experimental Studies



Advances in other  
Memory-Centric 
Computer Architectures

Section IV
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Near-Memory DRAM Computing
DRAM –Technology Categorization

Description
The memory latency problem can be addressed by situating 
processing elements closer to memory. A first attempt at 
this for DRAM memory was to integrate a processor and 
DRAM memory on a single chip to enhance memory 
bandwidth by on-chip data movement [see bottom right 
figure]. A critical failing of this approach is reduced 
processing performance. Rather than constructing 
processing elements from SRAM, on-chip integrated DRAM 
processors had to be built with DRAM, “a material optimized 
for memory cost and energy, but not logic speed”. 
Improvements to Near-Memory DRAM computing have 
resulted in 3D integrated circuits composed of 2D DRAM 
memory layers with a single bottom logic layer with vertical 
high-speed through-silicon vias (TSV) access to memory [see 
top right figure]. The logic layer, separated from memory 
layers, can be optimized for processing performance. 
Sources: [3]

Remaining Challenges
Although reduced, data movement energy costs are still 
substantial in the latest versions of 3D memory cubes. HBM2’s 
data movement and I/O costs are 3.48 pJ/bit at a 50% toggle 
rate. These may be decreased by reducing distance between 
processing elements and memory.  

Commercial 
Development

• Hybrid Memory 
Cube (HMC), 
Samsung/Micron

• High-Bandwidth 
Memory (HBM), 
Samsung/AMD/SK 
Hynix

• PIM Chips, 
UPMEM

V. 1. Technology Categorization
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Major Near-Memory DRAM Developments

Samsung’s FPGA AxDIMM

Samsung’s AxDIMM (not yet commercially 
available, see figure A) is a flexible near-memory 
FPGA based on DRAM internal memory. Near-
memory processing elements can perform 
elementwise summation among other 
operations, minimizing data transfer costs. 

Notably, the AxDIMM has two modes: non-
acceleration and acceleration. In non-
acceleration, host CPU can access all DRAM 
memory cells. In acceleration mode, the near-
memory processing elements receive lookup and 
pooling instructions from the host CPU to reduce 
memory latency.  

Ke et. al. tested the AxDIMM by developing a 
custom software stack enabling ML use-cases. 
They found that the “AxDIMM accelerates the 
execution of a broad class of recommendation 
models and provides up to 1.89x speedup and 
31.6% memory energy savings.”

Source: [18]

CGRA DRAM Accelerator

A 2015 IEEE publication explored the use of 
through-silicon- vias (TSVs) to construct 3D 
DRAM integrated memory arrays with coarse-
grain reconfigurable accelerators as the local, 
near-memory processing layer (see figure B). 
Previous 3D DRAM near-memory arrays 
alternated memory and logic layers, with the 
effect of reduced capacity and poor thermal 
control. The single CGRA logic layer minimizes 
reductions in memory capacity and adverse 
thermal impacts. 

The empirical analysis of the DRAM Accelerator 
found that it “can reduce the energy 
consumption to transfer data across the 
memory hierarchy by 66-95 percent while 
achieving speedups of up to 18x over a 
commodity processor.”

Source: [19]

V. 2. Advances in Mechanisms, Architectures, and Device Configuration

A

B
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Samsung and Micron lead development of Near-DRAM computing solutions

V. 3. Key Players

Samsung
Samsung has long been a leader in developing near-
memory processing capabilities for DRAM. Specifically, 
Samsung partnered with AMD to develop the high-
bandwidth memory (HBM, see figure A) 3D DRAM 
memory cube. 

HBM is composed of heterogeneous 2D DRAM memory 
layers with a bottom logic layer. The separation of logic 
and memory layers allows the logic layer to be built 
from non-DRAM materials, which have better 
performance. Data communication is managed by 
through-silicon vias (TSVs). The HBM communicates 
with the host CPU “through silicon interposers with 
parallel inks” to optimize compatibility with highly-
parallelized GPUs. 

In 2021 Samsung announced that a future iteration of 
the HBM will have a “DRAM-optimized AI engine inside 
each memory bank…enabling parallel processing and 
minimizing data movement.” 

Sources: [3]; [20]

Micron
Micron developed the Hybrid Memory Cube (HMC, see 
figure B) in collaboration with Samsung, Open-Silicon, 
ARM, HP, and Microsoft. The HMC is similar to Samsung’s 
HBM. A key difference is how the 3D memory cube 
communicates with host CPUs. Micron’s HMC uses 
packet-based serial links to interface with host CPUs. 
Micron’s product is more effective at communication 
with CPUs, where Samsung’s HBM is suited for 
interacting with GPUs.

In 2018 Micron ceased focusing on HMC improvements. 
Rather, Micron is collaborating with Samsung on the 
HBM and other high-performance memory technologies.

Micron has recently partnered with the Pacific Northwest 
National Laboratory on a near-memory computing 
project to generate “specialized programming 
frameworks targeting Micron near memory design.” This 
collaboration also seeks to optimize the collaborative 
workflow of parallel accelerators. 

Sources: [3], [21]

A

B
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Near-DRAM Computing is ideal for ML Applications

V. 4. Target Applications

AIoT

Near-DRAM ML 
Computing

The Neurocube is a representative 
example of near-DRAM computing 
that targets ML applications. The 
3D memory structure is Micron’s 
Hybrid Memory Cube (see figure 
A). However, the processing 
elements are composed of 
multiple multiply accumulator 
(MAC) units generally involved in 
ML matrix operations. A similar ML 
aimed near-DRAM architecture 
titled Tetris (see figure B) was 
proposed by Stanford to extend 
the concept of Neurocube by 
optimizing data storage through a 
“hybrid work partitioning scheme” 
meant to reduce data 
access/mobility costs. 
Sources: [3]; [22]

A

Energy 
Efficient

Reduced Data 
Movement

Reduced 
Data Latency

Potential Benefits of Near-DRAM ML

B
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Near-DRAM Computing Still Suffers From Substantial Data Movement Energy Costs

V. 5. Requirements and Challenges

Overview

Near-DRAM computing does not fully deliver on its promise of 
increased energy efficiency due to several outstanding challenges and 
tradeoffs that are profiled below. Nonetheless, Samsung, Micron and 
UPMEM all view the design philosophy as containing sufficient promise 
to warrant continued research and development.
Sources: [3]

Interconnect Energy Consumption

The 3D near-DRAM computing chips 
consume large amounts of energy while 
transferring data from memory to I/O. 

Row Accesses Energy Consumption

The current versions of 3D near-DRAM 
computing products fail to reduce 
number of row accesses, each of which 
has an associated energy cost. 

Energy Savings Tradeoff

Energy efficiency is enhanced as logic is 
more closely coupled with memory. 
However, this generally involves tradeoffs 
of memory density and process 
technology.

Latency Tradeoff

Near-memory DRAM computing 
solutions pose a tradeoff between 
reducing memory latency, and increased 
bandwidth of computation throughput. 



VI. Federal 
Government Analysis

68
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Federal Government spent $2.5+ million USD
on Neuromorphic and In-memory Computing R&D

Total Federal Action Obligation by NAICS

Total US Government Allocation: $2,691,533 USD

Through 6 contracts alone, the Federal Government spent near $ 2.7 million USD in basic and advanced research and 
development of Neuromorphic and In-memory Computing over the last 8 years, mainly for Defense, Life Sciences, 
Aeronautics and Space Flight applications.

Source: Data from Moonbeam Exchange (from 2014 to 2022), Keywords: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing

Research and Development in the Physical, 
Engineering and Life Sciences (except 
Nanotechnology and  Biotechnology)

Research and Development in the Physical, 
Engineering and Life Sciences (except Biotechnology)

All Other Professional, Scientific and Technical 
Services

R&D – Defense Other: Other (Advanced 
Development)

R&D – Defense Other: Other (Applied 
Research/Exploratory Development)

Support – Professional: Program 
Evaluation/Review/Development

R&D – Space: Aeronautics/Space Technology 
(Basic Research)

Space R&D Services; Space Flight, Research and 
Supporting Activities; Basic Research

Total Federal Action Obligation by PSC

VI. 1 US Federal Spending Analysis
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Neuromorphic Computing Investment Consistent

Neuromorphic Computing investment has steadily risen from 2015 to 
2017, it dropped steeply in 2018, only to rise again and peak in 2019. 
On the other hand, In-Memory Computing only started to gain interest 
in 2020. However, since then, no more contracts were celebrated, 
neither for Neuromorphic nor In-Memory Computing. 

Source: Data from Moonbeam Exchange (from 2014 to 2022), Keywords: Neuromorphic Computing, Reservoir Computing, In-
Memory Computing, Near-Memory Computing

# of 
contracts

Amount (in 
USD)

Department of Defense 2 $1,836,847

Department of Health and Human Services (HHS) 2 $549,105

National Aeronautics & Space Administration 2 $305,581

Total Federal Action Obligation from 2015 to 2021 (in $ million USD)

VI. 1 US Federal Spending Analysis

In-Memory Computing seemed to rise only recently
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These 6 Federal Government Contracts Awarded to 5 Companies 
Mainly focused on R&D and producing innovative technology

Applied Research in Acoustics, 
LLC

Kalscott Engineering, Inc ABT Associates, Inc. Medium Technologies, Inc. Avalanche Technology, Inc.

Description

Brings together top-quality 
research scientists with systems 
and software engineers to solve 

real-world problems and 
develop real-world systems.

Provides specialized, full-service 
research, development, test 

and evaluation solutions for the 
Aerospace, Defense and 

Remote Sensing industries.

Committed to employ solutions 
to improve quality of life and 

economic well-being of people 
worldwide.

Specializes in video distribution, 
visualization and Business 

Process Outsourcing related 
business solutions

Produces technology for Discrete and 
Embedded MRAM and Systems-On-

Chip

Governmental 
Department

Department of Defense Department of Defense
Department of Health and 

Human Services
National Aerospace & Space 

Administration
National Aerospace & Space 

Administration

Number of 
Contracts

1 1 2 1 1

City, State Washington, DC Lawrence, KS Atlanta, GA Santa Barbara, CA Fremont, CA

Amount $937,994 $898,853 $549,105 $181,000 $124,581

Type of Computing Neuromorphic Neuromorphic Neuromorphic In-memory Neuromorphic

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)

VI. 1 US Federal Spending Analysis

https://www.ariacoustics.com/
https://www.ariacoustics.com/
http://www.kalscott.com/
https://www.abtassociates.com/
https://www.mediumtech.co.jp/
https://www.avalanche-technology.com/
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The US Government Granted $39.2 million USD

Total Funding: $39,201,169

As observed in Federal Contracts, Grants seemed to be mainly devoted to the R&D of 
Neuromorphic Computing (compared with In-Memory and Reservoir Computing, that 
had fewer and less significant investments).National Science Foundation (NSF) is 
responsible for most grants/funding. 

Source: Data from Moonbeam Exchange (from 2014 to 2022), Keywords: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, 
Near-Memory Computing

# of 
contracts

Amount 
(in USD)

National Science Foundation 40 $20,098,575

Department of Energy 2 $9,869,188

Department of the Air Force 7 $4,022,128

National Institutes of Health 4 $1,499,873

Department of Defense 3 $1,198,524

Department of the Army 3 $1,113,315

Defense Threat Reduction Agency 1 $1,041,261

Department of the Navy 3 $358,305

Grant Award Amount from 2014 to 2021 (in $ million USD)

VI. 1 US Federal Spending Analysis
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Universities seem to be the Top Governmental Contract Recipients 

University of California, San Diego Leland Stanford Junior University University Corporation University of Michigan

Governmental 
Department

Department of Energy
National Science Foundation

National Science Foundation 
Department of Defense

National Science Foundation National Science Foundation 

Amount $10,690,000 $4,497,332 $1,749,588 $1,739,895

Type of Computing Neuromorphic Neuromorphic Neuromorphic In-Memory ($1,360,352) & Neuromorphic ($379,543)

Research Grant Titles

• Quantum Materials For Energy Efficient 
Neuromorphic Computing (Q-MEEN-C) -
DESC0019273

• CRI: CI-NEW: Trainable Reconfigurable 
Development Platform For Large-scale 
Neuromorphic Cognitive Computing - 1823366

• Quantum Neuromorphic Computing And 
Simulation With Multimode Cavity QED -
W911NF1910262

• Coherent Ising Machines For 
Optimization, Machine Learning And 
Neuromorphic Computing - 1918549

• DMREF: Data Driven 
Discovery Of Conjugated 
Polyelectrolytes For 
Neuromorphic Computing 
- 1922042

• FET: MEDIUM: Memory Processing Unit (MPU) - An 
Efficient, Reconfigurable In-memory Computing Fabric -
1900675

• SHF: SMALL: Efficient In-memory Computing 
Architecture Based On RRAM Crossbar Arrays -
1617315

• Scaled Non-volatile Bulk Analogue Memory For 
Neuromorphic Computing - 2106225

Published Papers

From DESC0019273:
• https://arxiv.org/abs/2204.01832

From 1823366:
• 10.3389/fnins.2018.00583
• 10.3389/fnins.2019.00357
• https://doi.org/10.1109/ICRC2020.2020.00013
• https://doi.org/10.1145/3407197.3407209
• …

From 1918549:
• https://doi.org/10.1038/s41567-021-01492-w
• https://doi.org/10.1038/s41586-021-04223-6
• https://doi.org/10.1103/PhysRevResearch.4.0

13009
• https://doi.org/10.1364/OPTICA.442550
• https://doi.org/10.1364/OPTICA.442332
• …

From 1922042:
• https://doi.org/10.1038/s41

524-021-00541-5
• 10.1002/adma.201908120
• 10.1021/acs.jctc.9b01121

From 1900675:
• https://doi.org/10.1109/ISCAS51556.2021.9401307
• https://doi.org/10.1109/TCSI.2020.3000468
• …

From 1617315:
• https://doi.org/10.1002/adma.201700527
• https://doi.org/10.1038/s41928-019-0270-x
• …

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)

VI. 1 US Federal Spending Analysis

https://www.nsf.gov/awardsearch/showAward?AWD_ID=1823366
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1918549&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1922042&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1900675&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1617315
https://arxiv.org/abs/2204.01832
https://www.frontiersin.org/articles/10.3389/fnins.2018.00583/full
https://www.frontiersin.org/articles/10.3389/fnins.2019.00357/full
https://doi.org/10.1109/ICRC2020.2020.00013
https://doi.org/10.1145/3407197.3407209
https://doi.org/10.1038/s41567-021-01492-w
https://doi.org/10.1038/s41586-021-04223-6
https://doi.org/10.1103/PhysRevResearch.4.013009
https://doi.org/10.1103/PhysRevResearch.4.013009
https://doi.org/10.1364/OPTICA.442550
https://doi.org/10.1364/OPTICA.442332
https://doi.org/10.1038/s41524-021-00541-5
https://doi.org/10.1038/s41524-021-00541-5
https://onlinelibrary.wiley.com/doi/10.1002/adma.201908120
https://pubs.acs.org/doi/10.1021/acs.jctc.9b01121
https://doi.org/10.1109/ISCAS51556.2021.9401307
https://doi.org/10.1109/TCSI.2020.3000468
https://doi.org/10.1002/adma.201700527
https://doi.org/10.1038/s41928-019-0270-x
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Arizona State University Princeton University Research Foundation University of New York Georgia Tech Research Corporation

Governmental 
Department

Defense Threat Reduction Agency
National Science Foundation

Department of the Air Force
National Science Foundation

Department of the Air Force
National Science Foundation

National Science Foundation Department of 
Defense

Amount $1,541,261 $1,390,414 $1,056,344 $1,048,524

Type of Computing Neuromorphic
Reservoir ($1,056,379) & Neuromorphic 

($334,035)
Neuromorphic Neuromorphic

Research Grant 
Titles

• Characterizing And Modelling Radiation 
Effects In Neuromorphic Computing 
Paradigm - HDTRA11710038

• FET: SMALL: 2D Material Compound 
Synapse Arrays For Robust In-memory And 
Neuromorphic Computing (2DNEURO) -
2001107

• E2CDA: TYPE I: Collaborative Research: 
Nanophotonic Neuromorphic Computing -
1740262

• Reservoir Computing As A General 
Framework For A Comparative Study Of 
Classical And Quantum Information 
Processing - FA95502010177

• Fabrication Technologies For 
Superconducting Optoelectronic 
Neuromorphic Computing -
FA87501910031

• RUI: Structural And Compositional 
Modification Of Memristive Niobium 
Oxide Films For Neuromorphic Computing 
Applications - 2103185

• Radiation Tolerance Of New Self Healing 
Crystalline Memristors For Neuromorphic 
Computing - HDTRA11210031

Published Papers

From 2001107:
• https://doi.org/10.1088/2634-4386/ac0242
• https://doi.org/10.1088/1361-6528/ac55d2
• https://doi.org/10.1109/TCSI.2022.3144240

From 1740262:
• 10.1063/1.5109689
• 10.1109/ASAP49362.2020.00028
• https://doi.org/doi.org/10.1515/nanoph-

2020-0172

Universities seem to be the Top Governmental Contract Recipients 

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)
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https://www.nsf.gov/awardsearch/showAward?AWD_ID=2001107
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1740235&HistoricalAwards=false
https://doi.org/10.1088/2634-4386/ac0242
https://doi.org/10.1088/1361-6528/ac55d2
https://aip.scitation.org/doi/10.1063/1.5109689
https://ieeexplore.ieee.org/document/9153248
https://doi.org/doi.org/10.1515/nanoph-2020-0172
https://doi.org/doi.org/10.1515/nanoph-2020-0172
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Inheret, Inc Rensselaer Polytechnic Institute Virginia Polytechnic Institute & State University Drexel University

Governmental 
Department

National Institutes of Health National Science Foundation National Science Foundation National Science Foundation 

Amount $1,016,123 $1,000,000 $978,811 $933,107

Type of Computing Neuromorphic Neuromorphic
Reservoir ($499,999)

Neuromorphic ($478,812)
Neuromorphic

Type of Research or 
Development

• A SAAS Solution To Identify 
Patients At Increased Risk For 
Hereditary Disease -
R42CA239842

• PFI:BIC: Multimodal-sensor-
enabled Environments With 
Advanced Cognitive Computing 
Enabling Smart Group Meeting 
Facilitation Services. - 1631674

• RTML: SMALL: Achieving Real-time And Energy-efficient 
Computing For 5g Networks (ARTEN): A Deep Reservoir 
Computing Approach - 1937487

• SPECEES: Collaborative Research: Enabling Spectrum And 
Energy-efficient Dynamic Spectrum Access Wireless 
Networks Using Neuromorphic Computing - 1811497

• RTML: SMALL: Design Of System Software 
To Facilitate Real-time Neuromorphic 
Computing – 1937419

• CAREER: Facilitating Dependable 
Neuromorphic Computing: Vision, 
Architecture, And Impact On 
Programmability - 1942697

Published Papers

For 1631674:
• 10.1145/3304109.3325816
• 10.1145/3242969.3243022
• 10.1109/JSTSP.2020.2992394
• …

For 1937487:
• https://doi.org/10.1109/INFOCOM42981.2021.9488865
• https://doi.org/10.1109/INFOCOM42981.2021.9488764
• 10.1145/3392717.3392749 
• …

For 1811497:
• https://doi.org/10.1109/JIOT.2021.3052691
• https://doi.org/10.1109/TWC.2021.3051317
• https://doi.org/10.1109/TNNLS.2020.3029711 
• …

For 1937419:
• https://doi.org/10.1109/LES.2020.3025873
• https://doi.org/10.1145/3457388.3458664
• https://doi.org/10.1007/s11265-020-01573-8
• …

For 1942697:
• https://doi.org/10.1109/VTS50974.2021.9441

050
• https://doi.org/10.1145/3394885.3431529
• https://doi.org/10.1145/3457388.3458664
• …

Universities seem to be the Top Governmental Contract Recipients 

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)
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https://taggs.hhs.gov/Detail/AwardDetail?arg_AwardNum=R42CA239842&arg_ProgOfficeCode=110
https://nsf.gov/awardsearch/showAward?AWD_ID=1631674
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1937500
https://nsf.gov/awardsearch/showAward?AWD_ID=1811497&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1937419&HistoricalAwards=false
https://www.nsf.gov/awardsearch/showAward?AWD_ID=1942697&HistoricalAwards=false
https://dl.acm.org/doi/10.1145/3304109.3325816
https://dl.acm.org/doi/10.1145/3242969.3243022
https://ieeexplore.ieee.org/document/9086065
https://doi.org/10.1109/INFOCOM42981.2021.9488865
https://doi.org/10.1109/INFOCOM42981.2021.9488764
https://dl.acm.org/doi/10.1145/3392717.3392749
https://doi.org/10.1109/JIOT.2021.3052691
https://doi.org/10.1109/TWC.2021.3051317
https://doi.org/10.1109/LES.2020.3025873
https://doi.org/10.1145/3457388.3458664
https://doi.org/10.1007/s11265-020-01573-8
https://doi.org/10.1109/VTS50974.2021.9441050
https://doi.org/10.1109/VTS50974.2021.9441050
https://doi.org/10.1145/3394885.3431529
https://doi.org/10.1145/3457388.3458664
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Total SBIR/STTR given between 2016 to 2020

As for SBIR (Small Business Innovation Research) and STTR (Science Technology 
Transfer), 17 were given over the last 5 years. They were mainly for 
Neuromorphic Computing, but In-Memory gathered some interest in 2018 and 
Reservoir Computing gaining traction in 2020. 
Department of Defense and Health and Human Services are the top contributors 
for these programs.

Source: Data from Moonbeam Exchange (from 2014 to 2022), Keywords: Neuromorphic Computing, Reservoir Computing, In-Memory 
Computing, Near-Memory Computing

# of 
contracts

Amount 
(in USD)

Department of Defense 9 $3,372,445

Health and Human Services 2 $2,493,533

National Science Foundation 3 $1,199,586

National Aeronautics and Space Administration 2 $210,670

Department of Homeland Security 1 $98,331

Total Funding: $7,374,565

SBIR/STTR Award Amount from 2015 to 2020 (in $ million USD)

VI. 1 US Federal Spending Analysis
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The top beneficiaries were companies that develop work 
in Health sector (e.g. melanoma detection or identification of increased risk for hereditary disease) 

or Defense sector (e.g. cognitive computing applications or navigations systems)

Vignet, Inc
Applied Research in 

Acoustics, Inc.
Decibel Research, Inc. Inheret, Inc

Green Mountain 
Semiconductor, Inc.

Kalscott Engineering, Inc. Mentium Technologies, Inc.

Governmental 
Department

Health and Human 
Services

Department of Defense Department of Defense
Health and Human 

Services
National Science 

Foundation
Department of Defense National Science Foundation

Type of Award SBIR Phase II SBIR Phase I & II STTR Phase II STTR Phase II SBIR Phase I & II SBIR Phase I & II SBIR Phase I

Amount $1,499,971 $1,087,899 $997,449 $993,562 $975,000 $898,853 $224,586

Type of 
Computing

Neuromorphic Neuromorphic Neuromorphic Neuromorphic In-memory Neuromorphic Neuromorphic

Grant Titles

• Melanoma Early 
Detection RCT 
With Smartphones 
Cognitive 
Computing And 
Family Social 
Support

• Machine Interface 
for Contracting 
Assistance (MICA)

• Cognitive Computing 
Application for 
Defense Contracting

• RF-IR Data Fusion • InheRET: A SaaS 
solution to identify 
patients at increased 
risk for hereditary 
disease

• SBIR Phase I: Ultra-High 
Speed In-Memory 
Searchable Dynamic 
Random Access 
Memory

• SBIR Phase II: In-
Memory Artificial 
Neural Network

• Cognitive Computing 
Application for Defense
Contracting (SBIR 
Phase I & II)

• SBIR Phase I: Addressing 
the memory bottleneck in 
deep neural networks in 
cloud platforms

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)
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Potomac Research, LLC Rescon Technologies, LLC Avalanche Technology, Inc. Datanova Scientific, LLC Warrant Technologies, LLC Stalwart Technologies, Inc.

Governmental 
Department

Department of Defense Department of Defense
National Aeronautics & 
Space Administration

Department of Homeland 
Security

National Aeronautics & Space 
Administration

Department of Defense

Type of Award SBIR Phase I STTR Phase I SBIR Phase I SBIR Phase I SBIR Phase I SBIR Phase I

Amount $218,291 $145,953 $124,581 $98,331 $86,089 $24,000

Type of Computing Reservoir Reservoir Neuromorphic Neuromorphic Neuromorphic In-memory

Type of Research 
or Development

• Machine Learning Enabled 
Near-Real-Time Situational 
Response for Mechanical 
Systems

• Near-Term Forecasting of 
Nonstationary Dynamic 
Processes

• Data fusion for sUAS 
navigation systems using 
reservoir computing

• pMTJ STT-MRAM based 
Chiplets for 
Neuromorphic 
Computing

• RIDER on the Storm: A 
Cogntive Cloud for Resilience 
Assessment

• Neuroevolution of Electronic 
Liquid State Machines

• Open Call for Innovative 
Defense-Related Dual-Purpose 
Technologies/Solutions with a 
Clear Air Force Stakeholder 
Need

The top beneficiaries were companies that develop work 
in Health sector (e.g. melanoma detection or identification of increased risk for hereditary disease) 

or Defense sector (e.g. cognitive computing applications or navigations systems)

(Source: Data from Moonbeam Exchange (from 2014 to 2022); Keyword: Neuromorphic Computing, Reservoir Computing, In-Memory Computing, Near-Memory Computing)
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SyNAPSE Program

• Systems of Neuromorphic Adaptive Plastic Scalable Electronics (SyNAPSE) is a DARPA program that started in 2008 
with the aim to develop electronic neuromorphic machine technology, in an attempt to build a new kind 
of cognitive computer with form, function, and architecture similar to the mammalian brain. 

• The initial phase of the SyNAPSE program developed nanometer scale electronic synaptic components capable of 
adapting the connection strength between two neurons in a manner analogous to that seen in biological systems 
(Hebbian learning), and simulated the utility of these synaptic components in core microcircuits that support the 
overall system architecture.

• The program will also focus on hardware development through the stages of microcircuit development, fabrication 
process development, single chip system development, and multi-chip system development. In support of these 
hardware developments, the program seeks to develop increasingly capable architecture and design tools, very 
large-scale computer simulations of the neuromorphic electronic systems to inform the designers and validate the 
hardware prior to fabrication, and virtual environments for training and testing the simulated and hardware 
neuromorphic systems.

Source: https://www.darpa.mil/program/systems-of-neuromorphic-adaptive-plastic-scalable-electronics

VI. 2. Notable US Government Research Programs
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IBM Team 
led by Dharmendra Modha

IBM Research
Rajagopal Ananthanarayanan, Leland Chang, Daniel Friedman, Christoph Hagleitner, Bulent Kurdi, 
Chung Lam, Paul Maglio, Dharmendra Modha, Stuart Parkin, Bipin Rajendran, Raghavendra Singh

Stanford University
Brian A. Wandell, H.-S. Philip Wong

Cornell University
Rajit Manohar

Columbia University Medical Center
Stefano Fusi

University of Wisconsin–Madison
Giulio Tononi

University of California, Merced
Christopher Kello

iniLabs GmbH
Tobi Delbruck

1st Phase (2008) - $4.9 million 
2nd Phase - $16.1 million 

3rd Phase (2011) - $21 million 

HRL Team 
led by Narayan Srinivasa

HRL Laboratories
Narayan Srinivasa, Jose Cruz-Albrecht, Dana Wheeler, Tahir Hussain, Sri Satyanarayana, Tim 

Derosier, Youngkwan Cho, Corey Thibeault, Michael O' Brien, Michael Yung, Karl Dockendorf, 
Vincent De Sapio, Qin Jiang, Suhas Chelian

Boston University
Massimiliano Versace, Stephen Grossberg, Gail Carpenter, Yongqiang Cao, Praveen Pilly

1st Phase (2008) - $5.9 million
2nd Phase - $10.7 

3rd Phase (2011) - $17.9 million

Neurosciences Institute
Gerald Edelman, Einar Gall, Jason Fleischer

George Mason University
Giorgio Ascoli, Alexei Samsonovich

Portland State University
Christof Teuscher

Stanford University
Mark Schnitzer

University of Michigan
Wei Lu

Georgia Institute of Technology
Jennifer Hasler

University of California, Irvine
Jeff Krichmar

Set Corporation
Chris Long

SyNAPSE Program is mainly lead by two teams

VI. 2. Notable US Government Research Programs
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Several publications have been produced through the 
SyNAPSE Program

Supercomputer Simulations
Preissl et al., Compass: A scalable simulator for an architecture for Cognitive Computing

Neuroscience Data
Modha and Singh, Network architecture of the long-distance pathways in the macaque brain

Simulation with 100 trillion synapses
Wong et al., 1014

Neurosynaptic Core

Architecture: A Network of Neurosynaptic Cores, Neuron Model
Cassidy et al., Cognitive Computing Building Block: A Versatile and Efficient Digital Neuron Model for Neurosynaptic Cores

Programming Model, End-to-end Cognititve Ecosystem
Amir et al., Cognitive Computing Programming Paradigm: A Corelet Language for Composing Networks of Neurosynaptic Cores

Algorithms and Applications
Esser et al., Cognitive Computing Systems: Algorithms and Applications for Networks of Neurosynaptic Cores

Conceptual Models of Cognitive Systems
Shaw et al., Cognitive Computing Commercialization: Boundary Objects For Communication

Adapted from https://modha.org/2013/08/darpa-synapse-phase-3-a-new-foundation-to-program-synapse-chips/

Published papers highlights:

VI. 2. Notable US Government Research Programs

https://modha.org/2013/08/darpa-synapse-phase-3-a-new-foundation-to-program-synapse-chips/
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Several products have also been produced through the 
SyNAPSE Program

Published product highlights:

• clockless operation (event-driven), consumes 70 mW during 
real-time operation, power density of 20 mW/cm²

• manufactured in Samsung’s 28 nm process technology, 5.4 
billion transistors

• one million neurons and 256 million synapses networked 
into 4096 neurosynaptic cores by a 2D array, all 
programmable

• each core module integrates memory, computation, and 
communication, and operates in an event-driven, parallel, 
and fault-tolerant fashion Esser et al., 2016. Convolutional networks for fast, energy-

efficient neuromorphic computing. PNAS

Adapted from https://www.nextbigfuture.com/2016/09/ibm-neuromorphic-chip-hits-darpa.html and https://research.ibm.com/blog

VI. 2. Notable US Government Research Programs

https://www.nextbigfuture.com/2016/09/ibm-neuromorphic-chip-hits-darpa.html
https://research.ibm.com/blog
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“Nanotechnology-Inspired Grand Challenge For Future 
Computing” Program

• This program started in 2016 and is a shared vision of several collaborating Agencies: Department of Energy (DOE), 
National Science Foundation (NSF), Department of Defense (DOD), National Institute of Standards and Technology (NIST), 
Intelligence Community (IC)

• The Grand Challenge addresses three Administration priorities—the National Nanotechnology Initiative (NNI), the 
National Strategic Computing Initiative (NSCI), and the Brain Research through Advancing Innovative Neurotechnologies
(BRAIN) Initiative to create a new type of computer that can proactively interpret and learn from data, solve unfamiliar 
problems using what it has learned, and operate with the energy efficiency of the human brain.

• A successful result of this Grand Challenge may be the identification of application areas (that could be Grand Challenges 
themselves) that represent new approaches to computing, and then demonstrating the approach’s effectiveness through 
a physical device technology with scalable manufacturing methods, a compatible computer architecture, and 
demonstrations of applications performance and capabilities.

Source: https://www.nano.gov/sites/default/files/pub_resource/federal-vision-for-nanotech-inspired-future-computing-grand-challenge.pdf

VI. 2. Notable US Government Research Programs
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“Nanotechnology-Inspired Grand Challenge For Future 
Computing” Program

• Achieving this Grand Challenge would lead to many game-changing capabilities, addressing the following technology priorities shared 
by multiple Federal agencies: 
• Intelligent big data sensors that act autonomously and are programmable via the network for increased flexibility, and that 

support communication with other networked nodes
• Machine intelligence for scientific discovery enabled by rapid extreme-scale data analysis, capable of understanding and making 

sense of results and thereby accelerating innovation
• Online machine learning, including one-shot learning, and new methods and techniques to deal with high-dimensional and 

unlabelled data sets
• Cybersecurity systems that can prevent (or minimize) unauthorized access, identify anomalous behavior, ensure data and 

software code integrity, and provide contextual analysis for adversary intent or situational awareness
• Technology that enables trusted and secure operation of complex platforms, energy, or weapons systems that require software 

(or combination of multiple codes) so complicated that it exceeds a human’s ability to write and verify the software and its 
performance

• Emerging computing architecture platforms, neuromorphic or quantum or others, that significantly accelerate algorithm 
performance, concurrency, and performance execution while maintaining and/or reducing energy consumption by over six 
orders of magnitude compared to today’s state-of-the-art systems

• Autonomous or semi-autonomous platforms supporting the observe-orient-decide-act (OODA) process for both military and 
civilian purposes, such as transportation, medicine, scientific discovery, exploration, and disaster response

VI. 2. Notable US Government Research Programs
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Program has multiple research and development focus areas, 
with specific long term goals

Research and Development Focus Areas 

The research and development needed to achieve the Grand Challenge 
can be categorized into the following seven focus areas: 

1. Materials 

2. Devices and Interconnects 

3. Computing Architectures 

4. Brain-Inspired Approaches 

5. Fabrication/Manufacturing 

6. Software, Modeling, and Simulation 

7. Applications 

3. Computing Architectures long term goals:

• 5-year goal: Enable large-scale design, modeling, 
characterization, and verification of future computing 
architectures in both digital and analog domains. 
Leverage advances in high-performance computing 
platforms to enable parallel, high-concurrence, and 
large-scale simulations beyond exascale performance. 
This will enable the hybridization and interfacing of 
current digital computing with quantum- or biology-
inspired computing approaches that require analog
and other novel interfaces. 

• 10-year goal: Be able to predict the performance of 
new architectures incorporating new material systems 
and physical nonlinear phenomena. 

• 15-year goal: Be able to predict the design and 
characterization of computing architectures based on 
user applications needs. These results should enable 
ready-to-fabricate designs and specifications. 

VI. 2. Notable US Government Research Programs
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This program has multiple research and development focus 
areas, with specific long term goals

Research and Development Focus Areas 

The research and development needed to achieve the Grand Challenge 
can be categorized into the following seven focus areas: 

1. Materials 

2. Devices and Interconnects 

3. Computing Architectures 

4. Brain-Inspired Approaches 

5. Fabrication/Manufacturing 

6. Software, Modeling, and Simulation 

7. Applications 

4. Brain-Inspired Approaches long term goals:

• 5-year goal: Translate knowledge from biology, 
neuroscience, materials science, physics, and 
engineering into useable information for computing 
system designers.

• 10-year goal: Identify and reverse engineer 
biological or neuro-inspired computing 
architectures, and translate results into models and 
systems that can be prototyped.

• 15-year goal: Enable large-scale design, 
development, and simulation tools and 
environments able to run at exascale computing 
performance levels or beyond. The results should 
enable development, testing, and verification of 
applications, and be able to output designs that can 
be prototyped in hardware.

VI. 2. Notable US Government Research Programs
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Experts Consulted in Support of Report

Dr. Asim Iqbal
Dr. Asim completed a Masters in Neural Systems and 
Computation at the Institute of Neuroinformatics followed by a 
PhD in Computational Neuroscience and Machine Learning at 
the Institut für Hirnforschung (HiFo) and Zentrum für. Dr. Asim‘s 
experience includes a 2016 research project running 
classification on IBM‘s TrueNorth, and software development for 
a spike-based neuromorphic retina sensor. He is currently 
working as the lead Machine Learning Scientist at Cajal 
Neuroscience. 

Alpha Renner
Alpha is a PhD student at the Institute of Neuroinformatics. His 
work focuses on the simulation and emulation of spiking 
neural networks to explore memory and perception in a 
dynamical system. Alpha works closely with Intel’s Loihi team 
to refine and innovate neuromorphics using the Loihi. He 
presented his work on implementing a backpropagation 
algorithm on Loihi at Intel’s 2022 Conference on 
Neuromorphics .

Note: These figures were consulted in the crafting of this research report. However, any errors or deficiencies within the 
report must be credited to the makers of the report alone. 

Appendix

Dr. Sumit Bam Shrestha
Dr. Shrestha completed his PhD in Spiking 
Neural Networks at Nanyang Technological 
University of Singapore. He has been a 
Research Scientist at Intel since 2020, and 
works on Spiking Neural Networks, 
Neuromorphic Chips, and Dynamic Vision 
Sensors. 
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Definitions

• GOPS: Giga (billion) Operations Per Second

• TOPS: Tera (Trillion) Operations Per Second

• Fast Switching: Quick transfer from high-resistance states to low-resistance states for binary storage materials. Or, quick transfers from 

one multilevel state to another multilevel state for analogue storage materials

• Non-Volatile: Memory is retained even when disconnected from power supply

• Analogue Capability: Memory device can store more than two memory states

• Programming Symmetry: Transition from lower resistance states to higher resistance states is analogous to transition from higher

resistance states to lower resistance states in terms of pulse requirements

• Programming Linearity: Memory device resistance increases/decreases linearly with uniform application of pulses

• Low device to device variability: Memory devices are sufficiently predictable in their behavior (don’t vary from one to another) that 

neuromorphic computations are not inhibited
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